目录
4.1 神经元
4.1.1 净活性值
使用pytorch计算一组输入的净活性值z
净活性值z经过一个非线性函数f(·)后,得到神经元的活性值a
使用pytorch计算一组输入的净活性值:
import torch
#2个特征数为5的样本
X=torch.rand(size=[2,5])
#含有5个参数的权重向量
w=torch.rand(size=[5,1])
#偏置项
b=torch.rand(size=[1,1])
#使用'torch.matmul'实现矩阵相乘
z=torch.matmul(X,w)+b
print('input X:',X)
print('weight w:',w,'\nbias b:',b)
print('output z:',z)
结果:
说明
在飞桨中,可以使用nn.Linear完成输入张量的上述变换。
【思考题】加权相加与仿射变换之间有什么区别和联系?
区别:加权相加可以看成是线性映射,而仿射变换是平移和线性映射的复合。
联系:仿射变换包含加权相加。
4.1.2 激活函数
激活函数通常为非线性函数,可以增强神经网络的表示能力和学习能力。
常用的激活函数有S型函数和ReLU函数。
4.1.2.1 Sigmoid 型函数
常用的 Sigmoid 型函数有 Logistic 函数和 Tanh 函数。
1.使用python实现并可视化“Logistic函数、Tanh函数”
2.在飞桨中,可以通过调用paddle.nn.functional.sigmoid和paddle.nn.functional.tanh实现对张量的Logistic和Tanh计算。在pytorch中找到相应函数并测试。
import torch
import matplotlib.pyplot as plt
# Logistic函数
def logistic(z):
return 1.0 / (1.0 + torch.exp(-z))
# Tanh函数
def tanh(z):
return (torch.exp(z) - torch.exp(-z)) / (torch.exp(z) + torch.exp(-z))
# 在[-10,10]的范围内生成10000个输入值,用于绘制函数曲线
z = torch.linspace(-10, 10, 10000)
plt.figure()
plt.plot(z.tolist(), logistic(z).tolist(), color='#e4007f', label="Logistic Function")
plt.plot(z.tolist(), tanh(z).tolist(), color='#f19ec2', linestyle ='--', label="Tanh Function")
ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='lower right', fontsize='large')
plt.savefig('fw-logistic-tanh.pdf')
plt.show()
4.1.2.2 ReLU型函数
常见的ReLU函数有ReLU和带泄露的ReLU(Leaky ReLU)
1.使用python实现并可视化可视化“ReLU、带泄露的ReLU的函数”
2.在飞桨中,可以通过调用paddle.nn.functional.relu和paddle.nn.functional.leaky_relu完成ReLU与带泄露的ReLU的计算。在pytorch中找到相应函数并测试。
import torch
import matplotlib.pyplot as plt
# ReLU
def relu(z):
return torch.maximum(z,torch.tensor(0.))
# 带泄露的ReLU
def leaky_relu(z, negative_slope=0.1):
a1 = (torch.tensor(z > 0) * z)
a2 = (torch.tensor(z <= 0) * (negative_slope * z))
return a1 + a2
# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)
plt.figure()
plt.plot(z.tolist(), relu(z).tolist(), color="#e4007f", label="ReLU Function")
plt.plot(z.tolist(), leaky_relu(z).tolist(), color="#f19ec2", linestyle="--", label="LeakyReLU Function")
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()
4.2 基于前馈神经网络的二分类任务
4.2.1 数据集构建
使用第3.1.1节中构建的二分类数据集:Moon1000数据集,其中训练集640条、验证集160条、测试集200条。该数据集的数据是从两个带噪音的弯月形状数据分布中采样得到,每个样本包含2个特征。
import torch
import math
def make_moons(n_samples=1000, shuffle=True, noise=None):
'''
生成带噪音的弯月形状数据
:param n_samples: 数据量大小,数据类型为int
:param shuffle: 是否打乱数据,数据类型为bool
:param noise: 以多大程度增加噪声,数据类型为None或float
:return: X:特征数据,shape=[n_samples,2]
y:标签数据,shape=[n_samples]
'''
n_samples_out = n_samples // 2
n_samples_in = n_samples - n_samples_out
# 采集第1类数据,特征为(x,y)
# 使用‘torch.linspace'在0到pi上均匀取n_samples_out个值
# 使用'torch.cos'计算上述取值的余弦值作为特征1,使用'torch.sin'计算上述取值的正弦值作为特征2
outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))
inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))
print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)
print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)
# 使用'torch.concat'将两类数据的特征1和特征2分别延维度0拼接在一起,得到全部特征1和特征2
# 使用'torch.stack'将两类特征延维度1堆叠在一起
X = torch.stack(
[torch.cat([outer_circ_x, inner_circ_x]),
torch.cat([outer_circ_y, inner_circ_y])],
dim=1
)
print('after concat shape:', torch.cat([outer_circ_x,
inner_circ_x]).shape)
print('X shape:', X.shape)
# 使用'torch.zeros'将第一类数据的标签设为0
# 使用'torch.ones'将第一类数据的标签设为1
y = torch.cat(
[torch.zeros(size=[n_samples_out]), torch.ones(size=[n_samples_in])]
)
print('y shape:', y.shape)
# 如果shuffle为True,将所有数据打乱
if shuffle:
# 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据
idx = torch.randperm(X.shape[0])
X = X[idx]
y = y[idx]
# 如果noise不为None,则给特征值加入噪声
if noise is not None:
# 使用'torch.normal'生成符合正态分布的随机Tensor作为噪声,并加到原始特征上
X += torch.normal(mean=0.0, std=noise, size=X.shape)
return X, y
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.2)
num_train = 640
num_dev = 160
num_test = 200
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])
plt.figure(figsize=(5,5))
plt.scatter(x=X[:, 0].tolist(), y=X[:, 1].tolist(), marker='*', c=y.tolist())
plt.xlim(-3,4)
plt.ylim(-3,4)
plt.savefig('linear-dataset-vis.pdf')
plt.show()
结果:
4.2.2 模型构建
为了更高效的构建前馈神经网络,我们先定义每一层的算子,然后再通过算子组合构建整个前馈神经网络。
4.2.2.1 线性层算子
公式对应一个线性层算子,权重参数采用默认的随机初始化,偏置采用默认的零初始化。
# 实现线性层算子
class Linear(Op):
def __init__(self, input_size, output_size, name, weight_init=torch.randn, bias_init=torch.zeros):
"""
输入:
- input_size:输入数据维度
- output_size:输出数据维度
- name:算子名称
- weight_init:权重初始化方式,默认使用'paddle.standard_normal'进行标准正态分布初始化
- bias_init:偏置初始化方式,默认使用全0初始化
"""
self.params = {}
# 初始化权重
self.params['W'] = weight_init(size=[input_size, output_size])
# 初始化偏置
self.params['b'] = bias_init(size=[1, output_size])
self.inputs = None
self.name = name
def forward(self, inputs):
"""
输入:
- inputs:size=[N,input_size], N是样本数量
输出:
- outputs:预测值,size=[N,output_size]
"""
self.inputs = inputs
outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return outputs
4.2.2.2 Logistic算子(激活函数)
采用Logistic函数来作为公式中的激活函数。这里也将Logistic函数实现一个算子
class Logistic(Op):
def __init__(self):
self.inputs = None
self.outputs = None
def forward(self, inputs):
"""
输入:
- inputs: shape=[N,D]
输出:
- outputs:shape=[N,D]
"""
outputs = 1.0 / (1.0 + torch.exp(-inputs))
self.outputs = outputs
return outputs
4.2.2.3 层的串行组合
实现一个两层的用于二分类任务的前馈神经网络,选用Logistic作为激活函数,可以利用上面实现的线性层和激活函数算子来组装
# 实现一个两层前馈神经网络
class Model_MLP_L2(Op):
def __init__(self, input_size, hidden_size, output_size):
"""
输入:
- input_size:输入维度
- hidden_size:隐藏层神经元数量
- output_size:输出维度
"""
self.fc1 = Linear(input_size, hidden_size, name="fc1")
self.act_fn1 = Logistic()
self.fc2 = Linear(hidden_size, output_size, name="fc2")
self.act_fn2 = Logistic()
def __call__(self, X):
return self.forward(X)
def forward(self, X):
"""
输入:
- X:shape=[N,input_size], N是样本数量
输出:
- a2:预测值,shape=[N,output_size]
"""
z1 = self.fc1(X)
a1 = self.act_fn1(z1)
z2 = self.fc2(a1)
a2 = self.act_fn2(z2)
return a2
实例化一个两层的前馈网络,令其输入层维度为5,隐藏层维度为10,输出层维度为1。
并随机生成一条长度为5的数据输入两层神经网络,观察输出结果。
# 实例化模型
model = Model_MLP_L2(input_size=5, hidden_size=10, output_size=1)
# 随机生成1条长度为5的数据
X = torch.rand(size=[1, 5])
result = model(X)
print ("result: ", result)
结果:
4.2.3 损失函数
二分类交叉熵损失函数见第三章
# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(op.Op):
def __init__(self):
self.predicts = None
self.labels = None
self.num = None
def __call__(self, predicts, labels):
return self.forward(predicts, labels)
def forward(self, predicts, labels):
self.predicts = predicts
self.labels = labels
self.num = self.predicts.shape[0]
loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts)) + torch.matmul((1-self.labels.t()), torch.log(1-self.predicts)))
loss = torch.squeeze(loss, axis=1)
return loss
4.2.4 模型优化
神经网络的层数通常比较深,其梯度计算和上一章中的线性分类模型的不同的点在于:
线性模型通常比较简单可以直接计算梯度,而神经网络相当于一个复合函数,需要利用链式法则进行反向传播来计算梯度。
4.2.4.1 反向传播算法
前馈神经网络的参数梯度通常使用误差反向传播算法来计算。使用误差反向传播算法的前馈神经网络训练过程可以分为以下三步:
- 前馈计算每一层的净活性值Z(l)Z(l)和激活值A(l)A(l),直到最后一层;
- 反向传播计算每一层的误差项δ(l)=∂R∂Z(l)δ(l)=∂R∂Z(l);
- 计算每一层参数的梯度,并更新参数。
在上面实现算子的基础上,来实现误差反向传播算法。在上面的三个步骤中,
第1步是前向计算,可以利用算子的forward()方法来实现;
第2步是反向计算梯度,可以利用算子的backward()方法来实现;
第3步中的计算参数梯度也放到backward()中实现,更新参数放到另外的优化器中专门进行。
这样,在模型训练过程中,我们首先执行模型的forward()
,再执行模型的backward()
,就得到了所有参数的梯度,之后再利用优化器迭代更新参数。
以这我们这节中构建的两层全连接前馈神经网络Model_MLP_L2
为例,下图给出了其前向和反向计算过程:
下面我们按照反向的梯度传播顺序,为每个算子添加backward()
方法,并在其中实现每一层参数的梯度的计算。
4.2.4.2 损失函数
二分类交叉熵损失函数
实现损失函数的backward()
# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(Op):
def __init__(self, model):
self.predicts = None
self.labels = None
self.num = None
self.model = model
def __call__(self, predicts, labels):
return self.forward(predicts, labels)
def forward(self, predicts, labels):
"""
输入:
- predicts:预测值,shape=[N, 1],N为样本数量
- labels:真实标签,shape=[N, 1]
输出:
- 损失值:shape=[1]
"""
self.predicts = predicts
self.labels = labels
self.num = self.predicts.shape[0]
loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts))
+ torch.matmul((1 - self.labels.t()), torch.log(1 - self.predicts)))
loss = torch.squeeze(loss, axis=1)
return loss
def backward(self):
# 计算损失函数对模型预测的导数
loss_grad_predicts = -1.0 * (self.labels / self.predicts -
(1 - self.labels) / (1 - self.predicts)) / self.num
# 梯度反向传播
self.model.backward(loss_grad_predicts)
4.2.4.3 Logistic算子
为Logistic算子增加反向函数
class Logistic(Op):
def __init__(self):
self.inputs = None
self.outputs = None
self.params = None
def forward(self, inputs):
outputs = 1.0 / (1.0 + torch.exp(-inputs))
self.outputs = outputs
return outputs
def backward(self, grads):
# 计算Logistic激活函数对输入的导数
outputs_grad_inputs = torch.multiply(self.outputs, (1.0 - self.outputs))
return torch.multiply(grads,outputs_grad_inputs)
4.2.4.4 线性层
线性层输入的梯度
计算线性层参数的梯度
class Linear(Op):
def __init__(self, input_size, output_size, name, weight_init=torch.randn, bias_init=torch.zeros):
self.params = {}
self.params['W'] = weight_init(size=[input_size, output_size])
self.params['b'] = bias_init(size=[1, output_size])
self.inputs = None
self.grads = {}
self.name = name
def forward(self, inputs):
self.inputs = inputs
outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return outputs
def backward(self, grads):
"""
输入:
- grads:损失函数对当前层输出的导数
输出:
- 损失函数对当前层输入的导数
"""
self.grads['W'] = torch.matmul(self.inputs.T, grads)
self.grads['b'] = torch.sum(grads, axis=0)
# 线性层输入的梯度
return torch.matmul(grads, self.params['W'].T)
4.2.4.5 整个网络
实现完整的两层神经网络的前向和反向计算
class Model_MLP_L2(Op):
def __init__(self, input_size, hidden_size, output_size):
# 线性层
self.fc1 = Linear(input_size, hidden_size, name="fc1")
# Logistic激活函数层
self.act_fn1 = Logistic()
self.fc2 = Linear(hidden_size, output_size, name="fc2")
self.act_fn2 = Logistic()
self.layers = [self.fc1, self.act_fn1, self.fc2, self.act_fn2]
def __call__(self, X):
return self.forward(X)
# 前向计算
def forward(self, X):
z1 = self.fc1(X)
a1 = self.act_fn1(z1)
z2 = self.fc2(a1)
a2 = self.act_fn2(z2)
return a2
# 反向计算
def backward(self, loss_grad_a2):
loss_grad_z2 = self.act_fn2.backward(loss_grad_a2)
loss_grad_a1 = self.fc2.backward(loss_grad_z2)
loss_grad_z1 = self.act_fn1.backward(loss_grad_a1)
loss_grad_inputs = self.fc1.backward(loss_grad_z1)
4.2.4.6 优化器
在计算好神经网络参数的梯度之后,我们将梯度下降法中参数的更新过程实现在优化器中。
与第3章中实现的梯度下降优化器SimpleBatchGD不同的是,此处的优化器需要遍历每层,对每层的参数分别做更新。
class Optimizer(object):
def __init__(self, init_lr, model):
"""
优化器类初始化
"""
#初始化学习率,用于参数更新的计算
self.init_lr = init_lr
#指定优化器需要优化的模型
self.model = model
def step(self):
"""
定义每次迭代如何更新参数
"""
pass
class BatchGD(Optimizer):
def __init__(self, init_lr, model):
super(BatchGD, self).__init__(init_lr=init_lr, model=model)
def step(self):
# 参数更新
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
for key in layer.params.keys():
layer.params[key] = layer.params[key] - self.init_lr * layer.grads[key]
4.2.5 完善Runner类:RunnerV2_1
- 支持自定义算子的梯度计算,在训练过程中调用
self.loss_fn.backward()
从损失函数开始反向计算梯度; - 每层的模型保存和加载,将每一层的参数分别进行保存和加载。
import os
class RunnerV2_1(object):
def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
self.model = model
self.optimizer = optimizer
self.loss_fn = loss_fn
self.metric = metric
# 记录训练过程中的评估指标变化情况
self.train_scores = []
self.dev_scores = []
# 记录训练过程中的评价指标变化情况
self.train_loss = []
self.dev_loss = []
def train(self, train_set, dev_set, **kwargs):
# 传入训练轮数,如果没有传入值则默认为0
num_epochs = kwargs.get("num_epochs", 0)
# 传入log打印频率,如果没有传入值则默认为100
log_epochs = kwargs.get("log_epochs", 100)
# 传入模型保存路径
save_dir = kwargs.get("save_dir", None)
# 记录全局最优指标
best_score = 0
# 进行num_epochs轮训练
for epoch in range(num_epochs):
X, y = train_set
# 获取模型预测
logits = self.model(X)
# 计算交叉熵损失
trn_loss = self.loss_fn(logits, y) # return a tensor
self.train_loss.append(trn_loss.item())
# 计算评估指标
trn_score = self.metric(logits, y).item()
self.train_scores.append(trn_score)
self.loss_fn.backward()
# 参数更新
self.optimizer.step()
dev_score, dev_loss = self.evaluate(dev_set)
# 如果当前指标为最优指标,保存该模型
if dev_score > best_score:
print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
best_score = dev_score
if save_dir:
self.save_model(save_dir)
if log_epochs and epoch % log_epochs == 0:
print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")
def evaluate(self, data_set):
X, y = data_set
# 计算模型输出
logits = self.model(X)
# 计算损失函数
loss = self.loss_fn(logits, y).item()
self.dev_loss.append(loss)
# 计算评估指标
score = self.metric(logits, y).item()
self.dev_scores.append(score)
return score, loss
def predict(self, X):
return self.model(X)
def save_model(self, save_dir):
# 对模型每层参数分别进行保存,保存文件名称与该层名称相同
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
torch.save(layer.params, os.path.join(save_dir, layer.name + ".pdparams"))
def load_model(self, model_dir):
# 获取所有层参数名称和保存路径之间的对应关系
model_file_names = os.listdir(model_dir)
name_file_dict = {}
for file_name in model_file_names:
name = file_name.replace(".pdparams", "")
name_file_dict[name] = os.path.join(model_dir, file_name)
# 加载每层参数
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
name = layer.name
file_path = name_file_dict[name]
layer.params = torch.load(file_path)
4.2.6 模型训练
使用训练集和验证集进行模型训练,共训练2000个epoch。评价指标为accuracy
。
torch.manual_seed(123)
epoch_num = 1000
model_saved_dir = "model"
# 输入层维度为2
input_size = 2
# 隐藏层维度为5
hidden_size = 5
# 输出层维度为1
output_size = 1
# 定义网络
model = Model_MLP_L2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
# 损失函数
loss_fn = BinaryCrossEntropyLoss(model)
# 优化器
learning_rate = 0.2
optimizer = BatchGD(learning_rate, model)
# 评价方法
metric = accuracy
# 实例化RunnerV2_1类,并传入训练配置
runner = RunnerV2_1(model, optimizer, metric, loss_fn)
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_dir=model_saved_dir)
运行结果:
可视化观察训练集与验证集的损失函数变化情况。
# 打印训练集和验证集的损失
plt.figure()
plt.plot(range(epoch_num), runner.train_loss, color="red", label="Train loss")
plt.plot(range(epoch_num), runner.dev_loss, color="blue", linestyle='--', label="Dev loss")
plt.xlabel("epoch", fontsize='large')
plt.ylabel("loss", fontsize='large')
plt.legend(fontsize='x-large')
plt.savefig('fw-loss2.pdf')
plt.show()
#加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
4.2.7 性能评价
使用测试集对训练中的最优模型进行评价,观察模型的评价指标。
# 加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
结果:
[Test] score/loss: 0.8950/0.2498
从结果来看,模型在测试集上取得了较高的准确率。
下面对结果进行可视化:
import math
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200), indexing='ij')
x = torch.stack([torch.flatten(x1), torch.flatten(x2)], dim=1)
# 预测对应类别
y = runner.predict(x)
y = torch.squeeze((y >= 0.5).to(torch.float32), dim=-1)
# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:, 0].tolist(), x[:, 1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)
plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train, dim=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev, dim=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test, dim=-1).tolist())
plt.show()
结果:
【思考题】对比
3.1 基于Logistic回归的二分类任务 4.2 基于前馈神经网络的二分类任务
谈谈自己的看法
1、神经网络比Logisitc回归复杂,但越复杂的不一定是拟合效果最好的,Logsitc做事比神经网络误差更低。
2、Logistic回归的正确率受随机误差大小和变量个数的影响大,前馈神经网络的正确率受样本数量的影响大。
总结:
本次实验回顾了神经网络的净活性值、激活函数等内容,以及基于前馈神经网络的二分类任务中弯月数据集的构建,了解到在一定范围内noise值越小弯月形状越明显,以及前馈神经网络模型的构建。
参考:
https://blog.csdn.net/m0_57215376/article/details/127040349
https://blog.csdn.net/qq_51698536/article/details/127049277?spm=1001.2014.3001.5502
https://blog.csdn.net/weixin_53651790/article/details/127048382?spm=1001.2014.3001.5502