LoRA、QLoRA与AdaLoRA的低秩适配:如何让AI语言模型瘦身不减智?

在人工智能和机器学习领域,优化和缩减模型的复杂性是一个重要的研究课题。本文将详细介绍几种训练低维模型的技术,包括LoRA(Low-Rank Adaptation of Large Language Models)、QLoRA(量化版 LoRA)和AdaLoRA(更“巧妙”的低秩分解),并结合具体实例和数学表示来深入探讨它们的应用场景。

一、LoRA:大型语言模型的低秩适配

LoRA(Low-Rank Adaptation)是一种通过低秩分解来高效地微调大型语言模型的方法。其基本思路是将模型权重分解为一个低秩矩阵的乘积,从而减少微调所需的参数数量和计算量。

1、基本概念

LoRA 的核心思想是将原始权重矩阵 W分解为两个低秩矩阵 A 和 B的乘积,并在保持原始权重矩阵 W不变的情况下,通过训练低维矩阵 A和 B 来实现模型的适配。

具体公式如下:

Y=(W+ΔW)X=(W+AB)X

其中:

  • W是预训练模型的权重矩阵,保持不变。

  • ΔW是通过低秩矩阵 A 和 B 的乘积得到的调整矩阵。

2、 例子讲解

例1:假设我们有一个大型语言模型,其权重矩阵W的维度为 1000×1000。通过LoRA,我们将其分解为两个低秩矩阵 AB,其中A的维度为 1000×10,B的维度为 10×1000。这样,我们只需要训练AB共 20000 个参数,而不是原始的 1000000个参数。例如,在一个文本分类任务中,模型需要识别文本的情感倾向,LoRA 可以通过微调低维矩阵来高效地适应新的任务。

例2:假设你有一个大网格,网格上的每个格子都有一个值(这代表权重矩阵 W)。如果直接调整每个格子的值,工作量非常大。LoRA的方法就像是用一张小网格来覆盖大网格的一部分,只调整小网格的值(即 AB),这样可以大大减少工作量。

3、数学表示

LoRA 的数学表示如下:

W′=W+AB

其中:

4、应用场景

LoRA 适用于需要在有限计算资源下进行模型微调的场景,特别是在大型语言模型需要快速适应新的任务或数据集时。例如,机器翻译、文本分类、对话系统等任务中,LoRA 可以显著减少微调的计算成本和时间。

二、QLoRA:量化版 LoRA

QLoRA 是 LoRA 的量化版本,通过进一步压缩模型参数,提高了内存利用效率和计算速度。

1、基本概念

QLoRA 在 LoRA 的基础上引入了量化技术,将模型参数进行量化压缩,以减少存储和计算开销。例如,在处理 LLaMA-65B 模型时,QLoRA 将其 GPU 内存需求从 780GB 减少到 48GB。

2、例子讲解

**例1:**想象你有很多张高清照片(模型参数),如果每次都用原始分辨率存储和处理,需要占用大量存储空间。QLoRA的方法就像是将这些照片压缩成低分辨率版本,既可以节省空间,又能保留大部分关键信息。

例2: 这就像是你有一大堆书籍(模型参数),如果每本书都用原始的纸张打印,需要占用很多书架空间。QLoRA的方法就像是将这些书籍扫描成电子版PDF,并且用高效的压缩算法减少文件大小,这样你只需要很小的硬盘空间就能存储所有书籍。

3、数学表示

QLoRA 的数学表示涉及到量化和低秩分解:

4、应用场景

QLoRA 适用于内存资源有限但需要运行大型模型的场景。例如,边缘计算设备、移动设备和资源受限的数据中心中,QLoRA 可以显著降低模型运行的硬件需求。

三、AdaLoRA:更“巧妙”的低秩分解

AdaLoRA 是一种更“巧妙”的低秩分解方法,通过自适应调整低秩矩阵,实现更高效的模型适配。

1、基本概念

AdaLoRA 引入了自适应的低秩分解方法,根据任务和数据的变化动态调整低秩矩阵 A 和 B,从而提高模型的适应能力和表现。

2、例子讲解

**例1:**这就像是你在建造一座大楼(训练模型),在基础建设阶段需要大量重型设备和工人(高秩矩阵),而在装修阶段只需要少量工具和工人(低秩矩阵)。AdaLoRA的方法可以根据不同阶段自动调整资源配置。

例2: 想象你有一个可调节的工具箱(低秩矩阵)。普通的工具箱只能装固定数量的工具(固定秩),而AdaLoRA的方法就像是一个智能工具箱,能够根据不同的任务自动调整工具的数量和类型。

3、数学表示

AdaLoRA 的数学表示如下:

W′=W+A(t)B(t)

其中:

A(t)和 B(t)是随时间 t自适应调整的低秩矩阵。

4、应用场景

AdaLoRA 适用于数据分布动态变化的场景,如在线学习、时间序列预测等任务。在这些场景中,AdaLoRA 可以通过自适应调整低秩矩阵,提高模型的鲁棒性和表现。

四、总结

通过本文的详细介绍,我们深入探讨了三种用于训练低维模型的方法:LoRA、QLoRA和AdaLoRA。它们分别在减少模型复杂性、降低内存需求和提升适应能力等方面具有显著优势。以下是对这三种方法的总结:

方法

核心思想

关键优势

应用场景

LoRA

低秩分解权重矩阵

减少参数数量

大型语言模型的快速适应和微调

QLoRA

量化低秩分解

降低内存和计算需求

资源受限环境下的大型模型

AdaLoRA

动态调整低秩矩阵的秩

灵活智能的优化

持续学习和适应的新场景

1、LoRA: Low-Rank Adaptation of Large Language Models

  • 核心思想:通过将原始模型的权重矩阵分解为两个低秩矩阵来减少参数数量,从而优化模型。

  • 关键优势:在不改变原始权重的情况下,通过训练低秩矩阵来实现模型的微调,大大减少需要优化的参数数量。

  • 应用场景:主要用于快速适应和微调大型语言模型,如GPT-3和BERT,特别是在资源有限的情况下。

2、QLoRA: 量化版 LoRA

  • 核心思想:在LoRA的基础上,通过量化技术进一步压缩模型参数,显著降低内存使用和计算需求。

  • 关键优势:通过将模型参数用更低的比特数表示,可以在单个GPU上运行和训练大型模型,大幅减少内存占用。

  • 应用场景:适用于需要在资源受限环境下运行的大型语言模型,如移动设备或嵌入式系统。

3、AdaLoRA: 更“巧妙”的低秩分解

  • 核心思想:通过动态调整低秩矩阵的秩,智能优化模型,使其能够在不同训练阶段和数据输入情况下自适应地调整。

  • 关键优势:提供了更灵活和智能的优化方式,能够根据当前需求动态调整模型参数,提高训练和推理的效率。

  • 应用场景:适用于需要持续学习和适应的新场景,如在线学习系统和实时数据流处理。

这些技术在不同的应用场景中展现出巨大的潜力,为自然语言处理任务带来了新的可能性和更高的效率。未来,随着低秩适配技术的不断发展和优化,我们可以期待更多创新和突破,进一步推动人工智能技术的发展。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 10
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值