GNN-RAG: 更精准的GraphRAG

今天为大家分享一篇联合GNN和LLM来提升知识图谱问答系统(KGQA)精度的文章,该论文由明尼苏达大学发表。

GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning

GNN-RAG:用于大型语言模型推理的图神经检索

在这里插入图片描述

论文地址: https://arxiv.org/pdf/2405.20139

Github 开源地址: https://github.com/cmavro/GNN-RAG

1.论文概述

知识图谱问答系统(Knowledge Graph Question Answering)指的是利用 知识图谱(KG)来回答自然语言问题的系统。在 KGQA 系统中,用户输入的问题会被解析为相关的实体和关系,然后系统通过遍历知识图谱中的节点和边来找到准确的答案。因为知识图谱是以结构化的方式存储信息,能够很好地捕捉实体之间的关联,因此这种方法可以提高答案的准确性和相关性。

在KGQA场景中,回答的准确性高度依赖于检索KG事实的精准度。如何从复杂的图谱上执行精确的检索成为了核心挑战。检索正确的信息需要有效的图处理,而检索不相关的信息可能会在KGQA推理过程中误导LLM。目前主流的方法采用LLM从KG中进行检索,然而这种方法在多跳KGQA上表现不佳,因为它们不能处理复杂的图信息,或者它们需要非常大的LLM(例如GPT-4)的内部知识来补偿KG检索过程中的缺失信息。因此,在这篇文章中,作者提出了 GNN-RAG,以检索增强生成(RAG)风格将GNN的推理能力和LLM的文本理解能力相结合的新方法。

2.核心内容

在这里插入图片描述

GNN-RAG的架构如上图所示。具体可以分为三个阶段:

1. GNN 检索阶段:从知识图谱中检索出与问题相关的候选答案。图中的每个节点使用GNN模型聚合L-hop邻居信息得到节点表示,对节点表示做softmax操作,将得分高于阈值的节点选为候选答案。然后将这些候选点和问题中的实体节点在图上做最短路径匹配,最终得到检索的子图。在上图的例子中,经过GNN得到的候选点是“English, Jamaican English, French, Carbbean”,问题中的关键实体是 Jamaican, 将该实体与候选点做最短路径匹配最终输出检索子图。

2. LLM 和 GNN联合约减:作者微调了一个大模型用于从问题中挖掘推理链,例如在上图的例子中,大模型输出的推理链为“Jamaican->official_language” 和 “Jamaican->language_spoken”。这个过程要求大模型输出的推理链覆盖全面。然后将这个推理链和经过GNN得到的检索子图做匹配,过滤掉和推理链路不match的路径,得到最终的检索子图。

3. RAG生成:将检索子图和问题联合喂入大模型生成答案。

3.总结

这篇论文提出了GNN-RAG,联合LLM和GNN做精确检索。这种方法结合了LLM的理解能力和GNN处理图上复杂多跳信息的能力。这篇工作为在图上做精确检索提供了新的思路。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值