Agent应用爆发,别卷了!

今天给家人们分享一个新闻稿,关于Google和Microsoft互卷Agent应用的信息。

在2023年9月24日,谷歌云(Google Cloud)公布了与客户合作的六个主要领域的AI Agent,这些领域包括客户服务、员工赋能、代码创建、数据分析、网络安全以及创意构思与制作,同时还展示了185个行业领先的AI应用案例。不到一个月后,微软于10月21日宣布在Dynamics 365中推出了十个新的自主Agents,旨在提升销售、服务、财务和供应链团队的能力。

微软十大Agents

新的自主Agent使客户能够从传统的业务应用转向以AI为优先的业务流程。AI如今被视为投资回报率的重要来源和未来竞争的关键。这些新Agent旨在帮助销售、服务、财务和供应链团队提升业务价值,而这仅仅是个开始。微软计划在未来一年内推出更多Agent,帮助客户获得所需的竞争优势,以确保其组织的可持续发展。

销售领域:

在这里插入图片描述

  1. 销售资格审查智能体(Sales Qualification Agent):此智能体帮助销售人员专注于高价值活动,通过研究和优先处理潜在客户节省时间,并生成个性化的销售邮件以启动销售对话。

  2. 销售订单智能体(Sales Order Agent):该智能体为中小型企业自动化整个订单接收流程,从订单输入到确认,通过与客户的互动来捕捉他们的偏好。

运营领域:

在这里插入图片描述

  1. 供应商通信智能体(Supplier Communications Agent):该智能体自动管理与供应商的协作,确认订单交付,帮助预防潜在的延迟。

  2. 财务对账智能体(Financial Reconciliation Agent):此智能体帮助财务团队准备和清洗数据集,从而简化并减少财务周期结束过程中最劳动密集的环节。

  3. 账户对账智能体(Account Reconciliation Agent):专为会计和控制人员设计,该智能体自动执行子分类账与总账之间的交易匹配和清算,加速财务结账流程。

  4. 时间和费用智能体(Time and Expense Agent):该智能体自动管理时间输入、费用跟踪及审批工作流程,确保及时向客户发送发票,防止收入流失,并确保项目按计划进行。

服务领域:

在这里插入图片描述

  1. 客户意图智能体(Customer Intent Agent):该智能体通过持续识别新的客户意图,从过去和当前的客户对话中映射出问题及相应解决方案,并维护一个由智能体管理的问题和解决方案库。

  2. 客户知识管理智能体(Customer Knowledge Management Agent):此智能体帮助确保知识文章始终保持更新,通过分析案例笔记、记录、摘要和其他来自人工辅助案例的资料来发现有价值的见解。

  3. 案例管理智能体(Case Management Agent):该智能体自动化案例生命周期中的关键任务,包括创建、解决、跟进和关闭,旨在减少处理时间并减轻服务代表的工作负担。

  4. 调度操作智能体(Scheduling Operations Agent):为Microsoft Dynamics 365 Field Service提供支持,使调度员能够为技术人员提供优化的日程安排,即使在工作条件变化的情况下也能灵活应对。

谷歌六类Agents

在这里插入图片描述

目前,数百名Google Cloud客户已经在其企业及全球范围内实施了AI Agent和生成性AI解决方案,其中许多客户获得了显著的投资回报。以下是185位行业领袖如何应用AI,并创造改变未来的实际用例的一部分快照:

在这里插入图片描述

优秀的客服人员与销售和服务人员相似,他们能倾听、理解客户需求,并推荐合适的产品和服务,能够无缝跨越网络、移动设备、销售点等渠道,并能通过语音和视频参与产品体验。

  1. 阿拉斯加航空正开发自然语言搜索,提供由人工智能驱动的对话体验,让旅客仿佛在与知识渊博的旅行社互动。该聊天机器人旨在简化预订流程,提升客户体验并加强品牌形象。

  2. Bennie Health利用Vertex AI支持其创新的员工健康福利平台,提供可操作的见解并优化数据管理,以提升员工和人力资源团队的效率和决策能力。

  3. Beyond 12是一家科技型非营利组织,专注于提升学生的能力发展。它开发了一款AI大学教练,通过文本、应用和网络,为第一代大学生提供可扩展的辅导服务。

  4. CareerVillage正在开发一款名为Coach的应用,帮助求职者,尤其是弱势青年,做好职业准备。目前该应用提供了35项职业发展活动,目标是在明年将活动数量增加到100多项。

  5. Character.ai借助Google Cloud AI的全套服务,构建了其逼真的对话平台,支持模型训练及日常运营,能够每日处理数TB的对话数据,不间断地提供服务。

在这里插入图片描述

员工智能体旨在帮助员工提升工作效率并增强协作能力。通过简化流程、管理重复性任务、回答问题以及编辑和翻译重要沟通内容,这些智能体有效支持日常运营。

  1. Bayes Impact为非营利组织构建了AI产品,其旗舰产品CaseAI是一款数字案例管理工具,可与NGO现有系统集成,为受益人量身定制行动计划草案,带来智能化功能。案例工作者平均每周可节省25小时的工作时间。

  2. 加拿大贝尔公司为其商业客户开发了可定制的联络中心解决方案,利用AI智能体处理来电,提供智能体助手,在线时提供建议和情绪分析,帮助客户运营节省了2000万美元。

  3. 百思买通过Contact Center AI实时生成对话摘要,让智能体专注于理解和支持客户,从而将通话时间和后续工作时间缩短了30到90秒,显著提升了客户与智能体的满意度。

  4. 智利Camanchaca海鲜公司在六周内开发了虚拟助手Elon,利用数字渠道提供高效的客户服务,增进了与客户的互动体验。

  5. Certify OS通过自动化医疗服务提供者的资格认证、许可和监控流程,减轻了医疗保健网络中耗时且孤立的信息管理负担。

在这里插入图片描述

代码智能体正在帮助开发人员和产品团队更高效地设计、创建和运行应用程序,加快了新语言和代码库的采用速度。许多组织因此实现了两位数的生产力提升,从而加快部署,生成更简洁清晰的代码。

  1. Labelbox已构建了完全托管的AI模型评估解决方案,直接集成到Vertex AI平台中,帮助Google Cloud用户无缝启动人工评估任务,并设置特定评估标准,如问答和摘要,简化并加速了部署更可信赖、权威的人机交互AI系统的过程。

  2. 全球家居装饰零售商Leroy Merlin使用Vertex AI开发了Pull Request Analyzer,这款生成式AI工具能够总结代码更改,帮助开发人员更快理解项目,提高代码审查效率。

  3. 产品开发平台Linear推出了Similar Issues功能,通过AI检测和预防重复或重叠的票证,确保数据表示更清晰、更准确。

  4. Magic正构建一个具有1亿个令牌上下文窗口的开发者平台,便于组织上传大规模代码库,并利用生成式AI更轻松地进行查询和构建。

  5. Pinecone为开发人员提供基础设施,用于构建准确、安全且可扩展的AI应用,使公司能够轻松将AI搜索、检索增强生成、编码智能体等应用集成到其专有数据中。

在这里插入图片描述

数据智能体就像身边随时可用的知识渊博的数据分析师和研究人员,能够帮助解答来自内部和外部来源的问题、整合研究、开发新模型——最重要的是,他们可以发现我们尚未提出的问题并帮助找到答案。

  1. 180 Seguros利用Google Cloud AI和BigQuery支持其员工数据管理平台,优化运营指标的跟踪,将查询速度提升了三倍。

  2. Addy AI帮助抵押贷款机构和银行通过在Vertex AI上训练的定制AI模型实现贷款流程自动化,例如,从包含多个附件的长电子邮件中提取贷款机会的详细信息。

  3. 拜耳作物科学开发的Climate FieldView是一个综合农业平台,拥有超过250个数据层和数十亿数据点。借助AI支持的建议,农民可以设计和监控田地,提升产量和施肥效率,同时减少碳排放。

  4. 芝商所正构建首个集成AI工具的云端大宗商品交易平台,为交易客户提供更深入的洞察和智能化交易,同时能够在不打断现有交易流程的情况下快速测试新的交易策略。

  5. Digits为初创企业和小型企业开发了下一代会计软件,利用AI驱动的簿记、费用管理和财务分析,让企业主在实现财务透明度的同时专注于业务增长。

在这里插入图片描述

安全智能体通过显著加快调查进程、实现自动化监控和响应,有效增强了警戒能力和合规管控,从而辅助安全运营。这些系统还能在抵御网络威胁方面发挥作用,如防范恶意提示注入等攻击,保护数据和模型安全。

  1. Gemini 技术被 Apex Fintech 应用于安全领域,使复杂威胁检测的编码时间从小时级缩减至秒级。

  2. Exabeam 为其新一代安全运营平台引入了基于生成式 AI 的辅助系统,为安全分析师提供支持。

  3. 金融科技服务提供商 Fiserv 借助 Gemini 增强了其安全运营平台,实现了更迅速的威胁总结、问题解答以及安全事件的检测、验证和响应。

  4. NetRise 推出了名为 Trace 的创新产品,通过引入 AI 驱动的意图搜索技术,提升了软件供应链安全。这使用户能够基于代码和配置背后的潜在动机或目的进行资产搜索,超越了传统的基于签名的方法。

  5. Palo Alto Networks 正在利用 Gemini 开发一个强大的 AI 助手,为其全天候安全平台提供支持,旨在提高智能体的效率和响应速度。通过将助手深度整合到组织的数据和安全协议中,大幅提升了响应的准确性。

在这里插入图片描述
创意智能体能够充分发挥最优秀的设计和制作技能,为您的组织提供支持,协助处理图像、幻灯片制作,并与团队成员共同探索创意概念。众多机构正在为其市场营销团队、音视频制作部门以及所有需要创意支持的人员配备智能助手。借助这些创意智能体,每个人都有潜力成为设计师、艺术家或制作人。

  1. 得益于Gemini for Google Workspace的支持,Adore Me的营销团队现可在短短一小时内完成产品差异化描述的撰写工作。这项原本繁琐的任务往常每月需耗时30-40小时。

  2. 拉丁美洲规模最大的媒体集团Globo正在应用Google Cloud的人工智能技术,为其流媒体用户提供高度个性化的内容,旨在提升观众的观看体验。

  3. Higgsfield.ai开发了多款面向消费者的文本转视频应用,其中包括Diffuse 2.0。该应用能够通过AI模型整合用户的照片、视频和文字,生成更加逼真的数字化头像。

  4. Jasper利用Google的AI基础设施,训练了一套专注于创意、写作和营销的AI模型。这使得无论大小团队都能以更快速度、更大规模获取经过品牌和数据优化的资产。

  5. Puma正在使用Imagen技术定制其网站上的产品图片,不仅节省了时间,还确保了图片在不同市场的本地化相关性。PUMA印度分公司的点击率已经提升了10%。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值