Nature Medicine|TORCH照亮肿瘤诊断之路:AI模型开创精准医疗新纪元

在期刊《Naturee Medicine》上发表文章《Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning》,研究利用基于细胞学的深度学习技术来预测原发性来源不明的癌症的肿瘤起源。在临床实践中,原发性来源不明癌(CUP, Cancer of Unknown Primary)是一类复杂的肿瘤,其特征为在患者的转移性病灶中发现肿瘤细胞,但经过常规影像学和组织学检查,未能确定原发肿瘤的位置。细胞学技术通过分析细胞样本,结合深度学习算法的强大模式识别能力,可以在大量数据中识别出与特定肿瘤类型相关的细胞特征,从而提供对肿瘤起源的预测。这种方法有望提高对CUP患者的诊断精度,改善个体化治疗策略,最终提高患者的预后。

01

引言

本研究旨在开发并验证一款名为TORCH的人工智能模型,通过分析细胞学图像数据,准确识别转移性肿瘤的原发部位,以提高肿瘤诊断的准确性并减轻病理学家的工作负担。尽管现有多种AI技术已在肿瘤诊断领域取得一定成果,但针对原发部位识别的研究仍显不足。TORCH模型的创新之处在于其采用先进的深度学习算法,能够自动提取细胞学图像中的关键特征并进行分类,结合细胞学检查与AI技术的优势,为肿瘤诊断提供新的思路与方法。研究预期将显著提升肿瘤原发部位识别的准确率,推动其在临床应用中的广泛推广,为个性化治疗方案的制定提供重要支持。

02

TORCH模型介绍

文章中的模型架构为TORCH,它是一个深度学习模型,旨在预测恶性细胞在胸水和腹水中的主要系统来源。以下是TORCH模型架构及其各个模块功能的介绍:

  1. 模型整体架构
  • TORCH模型通过训练四个不同的深度神经网络在三种不同类型的输入上,产生了12个不同的模型。

  • 这些模型结合了临床数据(如性别、年龄和样本采集部位)以及细胞学图像,用于提高诊断的准确性。

  1. 输入模块
  • 细胞学图像:作为模型的主要输入之一,细胞学图像提供了细胞形态和结构的信息,有助于识别不同来源的肿瘤细胞。

  • 临床数据:包括性别、年龄和样本采集部位等,这些数据为模型提供了额外的上下文信息,有助于更准确地预测肿瘤来源。

  1. 特征提取模块
  • 该模块负责从细胞学图像中提取有用的特征,如细胞形态、大小、核质比等。

  • 这些特征通过深度学习网络进行处理,以生成可用于分类的表征。

  1. 多任务学习模块
  • TORCH模型采用了多任务学习框架,同时处理多个相关任务(如区分良恶性样本、分类肿瘤来源等)。

  • 这种设计有助于提高模型的泛化能力和准确性。

  1. 分类模块
  • 分类模块是TORCH模型的核心,负责根据提取的特征和临床数据对肿瘤进行分类。

  • 它能够区分不同来源的肿瘤细胞,并预测其主要系统来源。

  1. 模型输出
  • TORCH模型的输出包括五个概率值,分别对应于消化系统、女性生殖系统、呼吸系统、血液和淋巴系统以及良性组。

  • 这些概率值有助于医生更准确地判断肿瘤的来源,从而制定更有效的治疗方案。

  1. 模型解释性
  • TORCH模型还具备解释性,通过使用注意力热力图来解释模型的预测结果。

  • 这有助于医生理解模型是如何做出决策的,并增加对模型输出的信任度。

综上所述,TORCH模型是一个集成了深度学习、多任务学习和临床数据的复杂架构,旨在提高肿瘤细胞学检查的准确率,为肿瘤的诊断和治疗提供更准确的信息。

TORCH模型架构示意图

03

研究结果

  1. 预测准确性
  • TORCH在预测主要肿瘤来源时,其top-1准确率为82.6%,top-3准确率为98.9%,显示出高度的预测准确性。
  1. 与病理学家比较
  • 与病理学家的预测结果相比,TORCH表现出更好的预测效能,其预测分数为1.677,而病理学家的预测分数为1.265(P < 0.001)。

  • 在辅助初级病理学家进行诊断时,TORCH显著提高了他们的诊断分数,从1.101提高到1.326(P < 0.001)。

  1. 五组测试集的结果
  • 在五个测试集(共27,337个样本)上,TORCH的总体微平均one-versus-rest受试者工作特征曲线下面积(AUROC)值为0.969(95%置信区间:0.962-0.975)。

  • 对于Tianjin-P和Yantai数据集,TORCH的AUROC值分别为0.978(CI 0.977-0.980)和0.969(CI未明确给出,但根据上下文可推断为与总体相近)。

  1. 癌症阳性病例的识别
  • 在识别癌症阳性病例方面,TORCH的AUROC值为0.974(CI 0.972-0.976),准确率为92.6%(CI 92.2-92.9%),敏感性为92.8%(CI 92.3-93.2%),特异性为92.4%(CI 92.0-92.8%)。
  1. 模型稳定性
  • TORCH在五个测试集上取得了相似的结果,表明其具有良好的稳定性和泛化能力。
  1. 不同确定性病例的预测效率
  • 在高确定性和低确定性病例中,TORCH均实现了相当的微平均one-versus-rest AUROC值,表明其在不同确定性水平的病例中均能保持稳定的预测性能。
  1. 与病理学家的进一步比较
  • 在495个病例的预测中,TORCH与病理学家相比,在特异性方面略有提高(平均89.4% vs 87.8%),尽管这种差异未达到统计显著性(P = 0.333)。

这些研究结果数据展示了TORCH模型在预测肿瘤来源方面的卓越性能,不仅超过了病理学家的预测水平,还显著提高了初级病理学家的诊断能力。

图1:TORCH模型的分类性能评估

图2:模型与病理学家在良恶性样本分类中的诊断性能比较

图3:TORCH模型预测与CUP患者长期预后相关性分析

04

研究意义

  1. 推动了肿瘤学诊断技术的发展

该文章发表的意义在于它推动了肿瘤学领域诊断技术的发展,特别是针对来源不明的肿瘤。通过引入TORCH这一创新的AI模型,研究为细胞学诊断提供了新的工具和方法,有望在未来成为肿瘤诊断的重要辅助手段。

  1. 提高了细胞学诊断的准确性

文章的发表对于提高细胞学诊断的准确性具有重要意义。TORCH模型能够结合临床信息和细胞学图像特征,对肿瘤的原发部位进行准确预测,这有助于减少误诊和漏诊,提高患者的治疗效果和预后。

  1. 提升了患者对肿瘤治疗的信心

通过提高诊断的准确性和一致性,该文章还间接提升了患者对肿瘤治疗的信心。患者能够更加准确地了解自己的病情和治疗方案,从而更加积极地配合治疗,提高治疗效果和生活质量。

  1. 为肿瘤学研究提供了新的视角和方法

文章的发表还为肿瘤学研究提供了新的视角和方法。TORCH模型的开发和应用为研究者提供了一种新的手段来探索肿瘤的发生、发展和转移机制,有助于深入理解和揭示肿瘤的生物学特性。

  1. 推动了医疗资源的优化配置

文章的发表还有助于推动医疗资源的优化配置。通过提高诊断的准确性和效率,TORCH模型有望减少不必要的穿刺活检和重复检查,从而降低医疗成本,提高医疗资源的利用效率。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值