一、基础架构与训练
- Transformer架构 - 基于自注意力机制的神经网络结构(2017年提出)
- 自注意力机制 (Self-Attention) - 计算序列内部元素关联度的核心模块
- 位置编码 (Positional Encoding) - 为输入序列添加位置信息的嵌入技术
- Token(词元) - 文本处理的基本单元,通常1个token能表示一个英文单词或者1个汉字,不同大模型分词标准不一样,比如unhappiness会被分成3个token,高频词New York可能归为1个token
- 预训练 (Pre-training) - 在大规模无标注数据上的初始训练阶段
- 自监督学习 (Self-Supervised Learning) - 通过数据本身构造监督信号的训练范式
二、训练优化技术
1. 监督微调 (Supervised Fine-Tuning, SFT) - 使用标注数据进行的针对性优化
2. 强化学习 (Reinforcement Learning, RL) - 通过奖励机制优化模型行为
3.人类反馈强化学习 (RLHF) - 结合人类评价的强化学习方法
4. 知识蒸馏 (Knowledge Distillation) - 将大模型知识迁移到小模型的技术
5.参数高效微调 (PEFT) - LoRA等低资源微调方法*
6. 指令微调 (Instruction Tuning) - 增强模型遵循指令能力的训练
三、模型优化技术
1. 模型压缩 (Model Compression) - 降低模型部署成本的技术集合,先进方法可达原模型1/10体积(精度损失<3%)
2. 量化 (Quantization) - 降低模型参数精度(如FP32→INT8),当前前沿技术可实现4-bit量化(如QLoRA)
3. 剪枝 (Pruning) - 移除冗余神经元/权重的方法
4. 低秩适应 (LoRA) - 冻结原参数的低秩矩阵微调技术
5.稀疏化训练 (Sparse Training) - 动态保留重要连接的优化方式
四、核心技术要素
- 提示工程 (Prompt Engineering) - 通过输入设计优化输出的技术
- 思维链 (Chain-of-Thought) - 分步推理的提示方法
- 温度参数 (Temperature) - 控制生成随机性的超参数(0-1区间)
- Top-p采样 (Nucleus Sampling) - 动态选择候选词的概率阈值
- 长上下文窗口 - 模型处理的Token上限(Gemini 1.5 Pro达100万)
五、模型架构演进
- 混合专家系统 (MoE) - 动态激活子网络的架构(如GPT-4)
- 多模态大模型 - 处理文本/图像/视频/音频的融合模型
- 递归增强 (Recurrent Inference) - 突破固定上下文限制的新范式
- 状态空间模型 (SSM) - 替代Transformer的潜在架构(如Mamba)
六、评估与对齐
- 困惑度 (Perplexity) - 语言模型预测能力评估指标
- 涌现能力 (Emergent Ability) - 模型参数突破阈值后突现的新能力(如逻辑推理)
- 幻觉率 (Hallucination Rate) - 生成内容与事实/逻辑不符的概率(关键风险指标)
- 人类对齐 (AI Alignment) - 确保模型符合人类价值观的技术
- 红队测试 (Red Teaming) - 系统性探测模型漏洞的方法
- 价值观校准 (Value Alignment) - 控制模型输出的伦理边界
七、应用层技术
1.检索增强生成 (RAG) - 结合外部知识库的生成技术
2. 智能体架构 (Agent Framework) - 具备记忆/规划能力的AI系统
3. 边缘计算部署 - 移动端模型优化技术(如手机端LLM)
4. 持续学习 (Continual Learning) - 增量更新知识不遗忘的能力
八、前沿研究方向
- 神经符号系统 - 结合符号推理与神经网络的架构
- 世界模型 (World Model) - 对物理规律的认知建模
- 具身智能 (Embodied AI) - 结合物理交互的智能体
- 能量模型 (Energy-Based Models) - 新一代生成式架构探索
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。