vLLM 实战教程汇总,从环境配置到大模型部署,中文文档追踪重磅更新

随着大语言模型(LLM)逐步走向工程化与规模化部署,其推理效率、资源利用率以及硬件适配能力正成为影响应用落地的核心问题。2023 年,加州大学伯克利分校的研究团队开源 vLLM,通过引入 PagedAttention 机制对 KV 缓存进行高效管理,显著提升模型吞吐量与响应速度,在开源社区迅速走红。截至目前,vLLM 在 GitHub 上已突破 46k stars,是大模型推理框架中的明星项目。

2025 年 1 月 27 日,vLLM 团队发布 v1 alpha 版本,在过去近两年的开发基础上对核心架构进行系统性重构。此次更新的 v1 版本核心在于执行架构的全面重构,引入隔离式 EngineCore,专注模型执行逻辑,采用多进程深度整合,通过 ZeroMQ 实现 CPU 任务并行化多进程深度整合,显式分离 API 层与推理核心,极大提升了系统稳定性。

同时,引入统一调度器(Unified Scheduler),具备调度粒度细、支持 speculative decoding、chunked prefill 等特性,在保持高吞吐量的同时提升延迟控制能力。

img

VLLM v1 的多进程处理架构及数据流向图

此外,**vLLM v1 突破性采用无阶段调度设计,**优化了用户输入和模型输出 token 的处理方式,简化了调度逻辑。该调度器不仅支持分块预填充(chunked prefill)和前缀缓存(prefix caching),还能够进行推测解码(speculative decoding),有效提高推理效率。

img

不同请求的调度分配过程

缓存机制的优化是另一大亮点。**vLLM v1 实现了 zero-overhead 前缀缓存(prefix caching),**即使在缓存命中率极低的长文本推理场景下,也能有效避免重复计算,提升推理一致性与效率。

img

无前缀缓存(紫色)与有前缀缓存(绿色)

在不同缓存命中率下的吞吐量

根据下图可以看出,vLLM v1 与 v0 版本相比,吞吐量提升了高达 1.7 倍,尤其在高 QPS 情况下,性能提升更为显著。需要注意的是,作为 alpha 阶段版本,vLLM v1 当前仍处于活跃开发中,可能存在稳定性与兼容性问题,但其架构演进方向已明确指向高性能、高可维护性与高度模块化,为后续团队快速开发新功能奠定了坚实的基础。

img

Llama 不同版本模型下

vLLM V0 与 V1 的延迟-QPS 关系对比

就在上个月,vLLM 团队还进行了一次小版本更新,重点提升了模型兼容性与推理稳定性。本次更新的 vLLM v0.8.5 版本引入了对 Qwen3 与 Qwen3MoE 模型的首日支持,新增融合 FP8_W8A8 MoE 内核配置,修复了多模态场景中的关键错误,进一步增强生产环境下的性能鲁棒性。

基础教程

1.vLLM 入门教程:零基础分步指南

在线运行:https://go.hyper.ai/Jy22B

该教程逐步展示了如何配置和运行 vLLM,提供 vLLM 的安装、模型推理、启动 vLLM 服务器以及如何发出请求的完整入门指南。

2.使用 vLLM 对 Qwen2.5 推理

在线运行:*https://go.hyper.ai/SwVEa

该教程详细展示了如何对一个 3B 参数的大语言模型的进行推理任务,包括模型的加载、数据的准备、推理过程的优化,以及结果的提取和评估。

3.使用 vLLM 加载大模型

进行少样本学习

*** 在线运行:*https://go.hyper.ai/OmVjM***

该教程为使用 vLLM 加载 Qwen2.5-3B-Instruct-AWQ 模型进行少样本学习,详细解释了如何通过检索训练数据获取相似问题构建对话,利用模型生成不同输出,推断误解并结合相关方法进行整合排名等操作,实现从数据准备到结果提交的完整流程。

4.将 LangChain 与 vLLM 结合

使用教程

*** 在线运行:*https://go.hyper.ai/Y1EbK***

本教程围绕将 LangChain 与 vLLM 结合使用展开,旨在简化并加速智能 LLM 应用程序开发,涵盖从基础设置到高级功能应用的多方面内容。

大模型部署

1.使用 vLLM 部署 Qwen3-30B-A3B

*** 发布机构:**阿里巴巴 Qwen 团队

*** 在线运行:*https://go.hyper.ai/6Ttdh***

Qwen3-235B-A22B 在代码、数学、通用能力等基准测试中,表现出与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 相媲美的能力。值得一提的是,Qwen3-30B-A3B 的激活参数数量仅为 QwQ-32B 的 10%,但表现更胜一筹,甚至像 Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。

2.使用 vLLM 部署 GLM-4-32B

*** 发布机构:**智谱 AI、清华大学

*** 在线运行:*https://go.hyper.ai/HJqqO***

GLM-4-32B-0414 在代码工程、工件生成、函数调用、基于搜索的问答和报告生成方面均取得了良好的效果。特别是在代码生成或特定问答任务等几个基准测试中,GLM-4-32B-Base-0414 实现了与 GPT-4o 和 DeepSeek-V3-0324(671B))等较大模型相当的性能。

3.使用 vLLM 部署

DeepCoder-14B-Preview

*** 发布机构:**Agentica 团队、Together AI

*** 在线运行:*https://go.hyper.ai/sYwfO***

该模型基于 DeepSeek-R1-Distilled-Qwen-14B,通过分布式强化学习(RL)进行了微调。它拥有 140 亿参数,在 LiveCodeBench v5 测试中达到了 60.6% 的 Pass@1 准确率,性能与 OpenAI 的 o3-mini 相当。

4.使用 vLLM 部署

Gemma-3-27B-IT

*** 发布机构:**MetaGPT 团队

*** 在线运行:*https://go.hyper.ai/0rZ7j***

Gemma 3 是一款多模态大模型,能够处理文本和图像输入并生成文本输出,其预训练变体和指令调优变体均提供开放的权重,适用于各种文本生成和图像理解任务,包括问答、摘要和推理。其相对较小的尺寸使得它们能够在资源有限的环境中部署。本教程使用 gemma-3-27b-it 作为演示进行模型推理。

更多应用

1.OpenManus + QwQ-32B

实现 AI Agent

*** 发布机构:**MetaGPT 团队

*** 在线运行:*https://go.hyper.ai/RqNME***

OpenManus 是由 MetaGPT 团队于 2025 年 3 月推出的开源项目,旨在复刻 Manus 的核心功能,为用户提供无需邀请码、可本地化部署的智能体解决方案。QwQ 是 Qwen 系列的推理模型,相比传统指令调优模型,QwQ 具备思考和推理能力,在下游任务尤其是难题上能取得显著性能提升。本教程基于 QwQ-32B 模型和 gpt-4o 为 OpenManus 提供推理服务。

2.RolmOCR 跨场景****极速 OCR

开源识别新基准

*** 发布机构:**Reducto AI

*** 在线运行:*https://go.hyper.ai/U3HRH***

RolmOCR 是基于 Qwen2.5-VL-7B 视觉语言模型开发的开源 OCR 工具。它能快速且低内存地从图片和 PDF 中提取文字,优于同类工具 olmOCR。RolmOCR 无需依赖 PDF 元数据,简化流程并支持多种文档类型,如手写笔记和学术论文。

以上就是小编为大家准备的 vLLM 相关的教程,感兴趣的小伙伴速来亲自体验吧!

为了帮助国内用户更好地理解和应用 vLLM,**HyperAI超神经的社区志愿者已协作完成首个 vLLM 中文文档,现已完整上线至 hyper.ai。**内容涵盖模型原理、部署教程与版本解读,为中文开发者提供系统化的学习路径与实用资源。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值