在人在数字化浪潮的推动下,人工智能已成为推动社会进步的关键技术之一。特别是在决策式AI与生成式AI这两个领域,它们的发展不仅加速了技术创新的步伐,也在实际应用中展现出巨大的潜力和价值。
01.智能双翼:决策式AI与生成式AI
决策式AI(Discriminative AI)
定义: 决策式AI,也称为判别式AI,是一种通过学习数据中的条件概率分布,对新场景进行判断、分析和预测的人工智能技术。它的设计目标是模拟人类的决策过程,通过分析输入的数据和信息,然后做出最有可能的决策。
技术原理: 决策式AI的工作方式是通过机器学习和深度学习算法,从大量的数据中学习和提取模式,然后用这些模式来做出决策。例如,在猫狗识别中,模型会从海量的猫和狗的图片数据中,了解到猫的外观和狗的外观差别非常大,当面对新的样本时,模型判断样本的外观和谁更相似,就认为样本是谁。
应用领域: 决策式AI广泛应用于金融、医疗、制造、零售等行业,主要关注业务优化和流程改进。例如,在金融领域,决策式AI可以帮助评估贷款申请的风险。
生成式AI(Generative AI)
定义: 生成式AI,也称为创造性AI,是一种能够生成新的、与人类创造力相似的文本、图像、音频、视频等内容的AI。它的设计目标是模仿人类的创造力,通过学习和理解大量的数据和信息,然后生成新的、创新的内容。
技术原理: 生成式AI的工作方式是通过深度学习和其他机器学习算法,从大量的数据中学习和提取模式,然后用这些模式来生成新的内容。它主要依赖于深度学习算法,通过建立复杂的神经网络来模拟人类的创造过程。
应用领域: 生成式AI通常用于需要大量创新内容的场景,例如艺术创作、新闻写作等。在创意产业、娱乐、教育等领域得到应用,关注内容创作和用户体验。
二者区别
-
功能定位:
- 决策式AI主要用于分析数据并提供决策支持,而生成式AI旨在根据输入生成新内容。
-
数据处理方式:
- 决策式AI依赖于已有数据进行分析和推理,强调数据的准确性和相关性。生成式AI通过学习数据的特征和分布来生成新内容,强调模型的创造力和多样性。
-
应用领域:
- 决策式AI广泛应用于需要解决具体问题或优化流程的场景,如金融风险评估、医疗诊断支持等。生成式AI则在创意产业、娱乐、教育等领域得到应用,关注内容创作和用户体验。
-
用户交互方式:
- 决策式AI的用户通常提供数据或业务背景,AI系统分析后返回决策建议。生成式AI的用户通过提供提示或主题,AI系统生成相关内容,用户的角色更为主动,参与创作过程。
02.二者的现实应用
决策式AI的应用
金融服务
在金融领域,决策式AI的应用主要集中在风险评估和投资策略上。例如,通过分析用户的信用历史和财务数据,决策式AI能够为银行提供贷款决策支持。此外,它还能利用市场数据预测股票价格波动,帮助投资者制定交易策略。
医疗行业
在医疗行业,决策式AI的应用包括诊断支持和个性化治疗。通过分析患者的病历和实验室结果,辅助医生诊断疾病,例如癌症检测。同时,根据患者的基因组数据,推荐最适合的治疗方案。
制造业
在制造业,决策式AI通过学习数据的特征和分布来优化生产流程和提高效率。例如,通过分析生产线上的数据,预测机器故障,减少停机时间。
生成式AI的应用
创意产业
生成式AI在创意产业中的应用非常广泛,尤其是在艺术创作和内容生成方面。它能够根据学习到的数据模式生成全新的艺术作品和文本内容,为创意产业带来新的可能性。
娱乐
在娱乐领域,生成式AI能够创作音乐、视频等多媒体内容,提供全新的娱乐体验。例如,通过模仿艺术家的风格进行创作,或生成全新的艺术作品。
教育
生成式AI在教育领域的应用包括个性化学习内容的生成。它可以根据学生的学习数据和行为模式,提供定制化的学习计划和教学资源,提升学习效果。
工业设计
生成式AI还为工业设计领域带来了新的变革和机遇。它能够生成新的产品设计概念,加速研发流程。
随着我们对决策式AI与生成式AI的深入探讨,我们可以看到,这两种技术正以前所未有的速度和规模影响着我们的世界。它们不仅在提高效率、降低成本方面展现出巨大潜力,而且在推动创新和解决复杂问题上也发挥着关键作用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。