项目简介
酷,阿里开源了基于其MNN-LLM框架的Android手机应用:MnnLlmApp,支持各类LLM在手机上离线运行
支持多种多模态任务,文本生成文本、图像生成文本、音频转文本以及文本生成图像
在安卓平台上,MNN-LLM的CPU性能优秀,预填充速度较llama.cpp提高了8.6倍,较fastllm提升了20.5倍,解码速度分别快了2.3倍、8.9倍
支持多种模型,Qwen、Gemma、Llama(涵盖TinyLlama与MobileLLM)、Baichuan、Yi、DeepSeek、InternLM、Phi、ReaderLM、Smolm等
完全在设备本地运行
这是我们的全功能多模态语言模型(LLM)安卓应用。
功能亮点
-
多模态支持: 提供多种任务功能,包括文本生成文本、图像生成文本、音频转文本及文本生成图像(基于扩散模型)。
-
CPU推理优化: 在安卓平台上,MNN-LLM展现了卓越的CPU性能,预填充速度相较于llama.cpp提高了8.6倍,相较于fastllm提升了20.5倍,解码速度分别快了2.3倍和8.9倍。下图为 llama.cpp 与 MNN-LLM 与 llama.cpp 的比较。
-
广泛的模型兼容性: 支持多种领先的模型提供商,包括Qwen、Gemma、Llama(涵盖TinyLlama与MobileLLM)、Baichuan、Yi、DeepSeek、InternLM、Phi、ReaderLM和Smolm。
-
本地运行: 完全在设备本地运行,确保数据隐私,无需将信息上传至外部服务器。
使用说明
您可以通过 Releases 下载应用,或者 自行构建(#开发)。
-
安装应用后,您可以浏览所有支持的模型,下载所需模型,并直接在应用内与模型交互。
-
此外,您可以通过侧边栏访问聊天历史,轻松查看和管理之前的对话记录。
!!!warning!!! 此版本目前仅在 OnePlus 13 和 小米 14 Ultra 上进行了测试。由于大型语言模型(LLM)对设备性能要求较高,许多低配置设备可能会遇到以下问题:推理速度缓慢、应用不稳定甚至无法运行。对于其他设备的稳定性无法保证。如果您在使用过程中遇到问题,请随时提交问题以获取帮助。
开发
克隆代码库:
git clone https://github.com/alibaba/MNN.git
构建库:
cd project/android``mkdir build_64``../build_64.sh "-DMNN_LOW_MEMORY=true -DMNN_CPU_WEIGHT_DEQUANT_GEMM=true -DMNN_BUILD_LLM=true -DMNN_SUPPORT_TRANSFORMER_FUSE=true -DMNN_ARM82=true -DMNN_USE_LOGCAT=true -DMNN_OPENCL=true -DLLM_SUPPORT_VISION=true -DMNN_BUILD_OPENCV=true -DMNN_IMGCODECS=true -DLLM_SUPPORT_AUDIO=true -DMNN_BUILD_AUDIO=true -DMNN_BUILD_DIFFUSION=ON -DMNN_SEP_BUILD=ON"
复制到 LLM Android 应用项目:
find . -name "*.so" -exec cp {} ../apps/MnnLlmApp/app/src/main/jniLibs/arm64-v8a/ \;
构建 Android 应用项目并安装:
cd ../apps/MnnLlmApp/``./gradlew installDebug
关于 MNN-LLM
MNN-LLM 是一个多功能的推理框架,旨在优化和加速大语言模型在移动设备和本地 PC 上的部署。通过模型量化、混合存储和硬件特定优化等创新措施,解决高内存消耗和计算成本等挑战。在 CPU 基准测试中,MNN-LLM 表现优异,其预填充速度比 llama.cpp 快 8.6 倍,比 fastllm 快 20.5 倍,同时解码速度分别快 2.3 倍和 8.9 倍。在基于 GPU 的评估中,由于 MLC-LLM 的对称量化技术优势,MNN-LLM 的性能在使用 Qwen2-7B 进行较短提示时略有下降。MNN-LLM 的预填充速度比 llama.cpp 快 25.3 倍,解码速度快 7.1 倍,相较于 MLC-LLM 也分别提高 2.8 倍和 1.7 倍。如需更详细的信息,请参考论文:MNN-LLM: A Generic Inference Engine for Fast Large LanguageModel Deployment on Mobile Devices
项目链接
https://github.com/alibaba/MNN/blob/master/project/android/apps/MnnLlmApp/README_CN.md
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。