“
描述研究意义(一)
PROMPT 1
界定研究范围与假设,明确界定核心概念及其操作定义。
Define the research scope and hypotheses, clearly delineating the core concepts and their operational definitions.
阐述研究设计的逻辑框架,包括研究目的、问题、及预期成果。
Elaborate the logical framework of the research design, encompassing research objectives, questions, and expected outcomes.
概述采用的定量研究方法,如问卷调查、实验设计等,并说明其适用性。
Outline the quantitative research methods employed, such as surveys and experimental designs, explaining their applicability.
介绍采用的定性研究方法,如案例研究、深度访谈等,并阐述其优势。
Introduce the qualitative research methods adopted, such as case studies and in-depth interviews, highlighting their strengths.
说明数据收集的过程,包括样本选择、数据获取途径及质量控制措施。
Describe the data collection process, including sample selection, data acquisition methods, and quality control measures.
论述数据处理的步骤,包括数据清洗、编码、分析及解释方法。
Discuss the data processing steps, encompassing data cleaning, coding, analysis, and interpretation techniques.
分析研究工具的选取依据,如问卷量表、测试工具的信效度验证。
Analyze the rationale behind the selection of research tools, such as questionnaire scales and the validity and reliability of testing instruments.
探讨研究变量的定义与测量,确保研究的可操作性和准确性。
Explore the definition and measurement of research variables, ensuring operationalizability and accuracy.
描述实验设计的具体细节,包括对照组设置、随机化过程等。
Describe the specific details of the experimental design, including control group setup and randomization procedures.
评估研究方法的可重复性,提供足够的细节以供其他研究者复制。
Evaluate the reproducibility of the research methods, providing sufficient details for replication by other researchers.
讨论数据收集过程中的潜在偏差及应对措施。
Discuss potential biases in the data collection process and mitigation strategies.
解析采用的统计分析方法,如回归分析、方差分析等,并解释其适用场景。
Explain the statistical analysis methods used, such as regression analysis and ANOVA, and their applicable contexts.
展示数据可视化手段,如图表、图形等,以增强结果的可理解性。
Present data visualization tools, such as charts and graphs, to enhance the comprehensibility of results.
论述研究方法的局限性,包括样本量、时间限制等,及其对结果的影响。
Discuss the limitations of the research methods, including sample size and time constraints, and their implications on the results.
强调伦理考量,如研究对象的知情同意、隐私保护等。
Emphasize ethical considerations, such as informed consent and privacy protection for research participants.
描述研究设计的灵活性,以应对意外发现或数据变化。
Describe the flexibility of the research design to accommodate unexpected findings or data variations.
比较不同研究方法的优缺点,以选择最适合本研究的方法。
Compare the strengths and weaknesses of different research methods to select the most suitable for this study.
分析研究假设的形成过程,基于文献回顾和理论框架。
Analyze the formation process of research hypotheses, grounded in literature review and theoretical frameworks.
阐述案例研究的选取标准,以确保案例的代表性和多样性。
Elaborate on the selection criteria for case studies to ensure representativeness and diversity.
说明三角验证法的应用,通过多渠道数据收集提高研究的信度。
Explain the application of triangulation methods to enhance research reliability through multi-source data collection.
探讨研究方法的创新点,如新技术、新方法的应用。
Explore the innovative aspects of the research methods, such as the application of new technologies and methodologies.
“
描述研究意义(二)
PROMPT 1
评估研究方法的适用性,针对特定研究领域或问题的契合度。
Evaluate the applicability of the research methods to the specific research domain or problem.
描述数据处理的软件工具,如SPSS、R语言等,及其功能特点。
Describe the software tools used for data processing, such as SPSS and R, and their functional characteristics.
分析研究样本的代表性,确保研究结果的普适性。
Analyze the representativeness of the research sample to ensure the generalizability of the results.
探讨研究设计的潜在改进空间,以优化未来研究。
Discuss potential areas for improvement in the research design to optimize future studies.
阐述研究方法的跨学科应用,结合不同学科的理论和方法。
Elaborate on the interdisciplinary application of research methods, integrating theories and methodologies from different fields.
分析研究方法的成本效益,考虑资源投入与研究成果的性价比。
Analyze the cost-effectiveness of the research methods, considering the resource investment versus the value of the research outcomes.
探讨研究方法的可持续性,如长期跟踪研究的设计。
Discuss the sustainability of the research methods, such as the design of long-term longitudinal studies.
说明研究方法的可推广性,如何将其应用于更广泛的研究领域。
Explain the transferability of the research methods to broader research areas.
分析研究方法的理论贡献,如何丰富或挑战现有理论体系。
Analyze the theoretical contributions of the research methods, either enriching or challenging existing theoretical frameworks.
描述研究方法的实践意义,对政策制定、实践操作的启示。
Describe the practical implications of the research methods for policy-making and operational practices.
探讨研究方法的跨文化适用性,考虑不同文化背景下的差异。
Discuss the cross-cultural applicability of the research methods, considering variations across different cultural contexts.
分析研究方法的敏感性,尤其是在处理敏感话题或数据时。
Analyze the sensitivity of the research methods, especially when dealing with sensitive topics or data.
阐述研究方法的透明度,确保研究过程的公开和可追溯性。
Elaborate on the transparency of the research methods to ensure openness and traceability of the research process.
讨论研究方法的迭代过程,如何根据初步结果调整研究方法。
Discuss the iterative process of the research methods, adjusting based on preliminary findings.
分析研究方法的跨学科融合,结合不同学科视角的优势。
Analyze the interdisciplinary integration of research methods, leveraging the strengths of different disciplinary perspectives.
阐述研究方法的创新路径,如结合新兴技术提升研究效率。
Elaborate on the innovative pathways of the research methods, incorporating emerging technologies to enhance research efficiency.
探讨研究方法的局限性对研究结论的影响,及其解释策略。
Discuss the impact of methodological limitations on research conclusions and strategies for interpretation.
分析研究方法的可验证性,即其他研究者能否验证研究结果。
Analyze the verifiability of the research methods, whether other researchers can replicate the findings.
总结研究方法的整体框架,强调其在实现研究目标中的作用。
Summarize the overall framework of the research methods, emphasizing their role in achieving the research objectives.
推荐使用国内稳定的AI工具:https://www.infinitepaperai.cn/index
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。