过完这个春节,DeepSeek已经成了人尽皆知的一个AI工具了,没有人能回避,确实太强大了。今天的文章来探讨一下deepseek与Excel结合的应用。
我们以当年Power Query让人觉得拯救生命的文件合并功能来验证一下deepseek的能力。示例文件是一个包含3张工作表的Excel文档,它们格式相同,我们要让它们首尾相接合并在一起。
来到DeepSeek官网(www.deepseek.com),简单注册以后,直接向deepseek提问:
我给你发一个Excel工作簿,里面有三个工作表,他们的格式是一样的,你能帮我把他们合并在一起吗?
把本地的Excel文件也发给它,点击对话框中的回形针图标就可以发送文件。提问的时候开启深度思考
与ChatGPT、豆包及kimi不同的是deepseek会将思考过程以灰色字展示出来。我们应该仔细的阅读它的思考过程,看看我们的需求是否被正确解读了。
关于数据合并deepseek给出了三种方法,并且告诉我们使用Power Query可能是最佳选择,也给出了相应的界面操作步骤和功能菜单的路径。
在Excel中,合并多个工作表的方法有多种:
1. **手动复制粘贴**:逐个打开每个工作表,复制数据,然后粘贴到新工作表中。但如果有多个工作表或数据量大,这种方法效率低,容易出错。
2. **使用Power Query(Excel内置工具)**:
- 在Excel中,可以通过Power Query来合并多个结构相同的工作表。
- 步骤包括:获取数据从工作簿,选择多个工作表,追加查询,然后加载到新工作表。
- 这种方法适合处理大量数据,且操作相对简单,但需要用户启用Power Query插件(在较新版本的Excel中称为“获取和转换数据”)。
3. **使用VBA宏**:编写一个简单的VBA脚本来自动遍历所有工作表并合并数据。这对于不熟悉编程的用户来说可能有些复杂,但可以一次性解决问题。
考虑到用户可能更倾向于使用无需编程的方法,Power Query可能是最佳选择。需要详细说明步骤,确保用户能够按照指引操作。同时,提醒用户在合并后检查数据是否完整,是否有重复项需要处理。
一、界面操作描述能力
下面是deepseek给出的操作步骤,deepseek选择的方法是追加查询,并且给出了非常细致的操作路径,只要使用过Power Query就能轻松的完成操作。
AI没告诉你的
deepseek仅在步骤2漏了勾选选择多项。勾选了此选项才能分别选择三张工作表。当然这是使用电脑的基本常识,很容易理解。
deepseek最后甚至给出了注意事项。
二、VBA编程能力
众所周知,AI工具非常擅长于编程,于是我进一步让它给出了合并数据的VBA代码。
同样的经过深度思考以后,deepseek给出了规范、清晰的代码,甚至还包含了注释。deepseek给出的代码如下:
Sub MergeSheets()` `Application.ScreenUpdating = False ' 关闭屏幕刷新,提升速度` `Application.Calculation = xlCalculationManual ' 关闭自动计算` ` Dim wsDest As Worksheet` `Dim wsSrc As Worksheet` `Dim lastRowSrc As Long` `Dim lastRowDest As Long` `Dim headerRow As Range` ` ' 创建或清空目标工作表` `On Error Resume Next` `Set wsDest = ThisWorkbook.Sheets("合并结果")` `If Err.Number <> 0 Then` `Set wsDest = ThisWorkbook.Sheets.Add(After:=Sheets(Sheets.Count))` `wsDest.Name = "合并结果"` `Else` `wsDest.Cells.ClearContents ' 清空原有数据` `End If` `On Error GoTo 0` ` ' 复制标题行(假设所有工作表结构一致)` `Set headerRow = ThisWorkbook.Sheets("Sheet1").Rows(1)` `headerRow.Copy Destination:=wsDest.Range("A1")` ` ' 循环处理每个工作表` `For Each wsSrc In ThisWorkbook.Sheets` `If wsSrc.Name <> wsDest.Name And _` `(wsSrc.Name = "Sheet1" Or wsSrc.Name = "Sheet2" Or wsSrc.Name = "Sheet3") Then` `lastRowSrc = wsSrc.Cells(wsSrc.Rows.Count, "A").End(xlUp).Row ' 获取数据最后一行` `lastRowDest = wsDest.Cells(wsDest.Rows.Count, "A").End(xlUp).Row + 1 ' 目标表下一行` ` ' 复制数据(从第2行开始,跳过标题)` `wsSrc.Range("A2:J" & lastRowSrc).Copy _` `Destination:=wsDest.Range("A" & lastRowDest)` `End If` `Next wsSrc` ` Application.ScreenUpdating = True ' 恢复屏幕刷新` `Application.Calculation = xlCalculationAutomatic ' 恢复自动计算` `MsgBox "合并完成!共合并 " & wsDest.UsedRange.Rows.Count - 1 & " 行数据。", vbInformation``End Sub
如果你没用过VBA也没关系,deepseek同样给出了详细的使用步骤。将代码复制到同一个工作簿中,按照步骤插入和执行。
AI没告诉你的
deepseek没有给出具体的插入模块的路径,在目录树中需要单击鼠标右键。
数据完美地在几秒之间合并了,留下的只有数据人的感叹!!如果手撸这段代码,一天够吗?
事情变得简单了,人就很容易变的大意。使用deepseek等AI工具时,使用人保持清醒很重要。因为明确的需求和结果只有你知道,只有AI工具准确理解了这两个要素才能给出准确的答案。
另外,deepseek是大神,对话的时候也许不会顾及所有的细节。因此你需要能解决一些细节方面的问题,才能畅快的使用它,享受AI带来的时代福利。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。