最新!一文带你读懂,扣子(Coze)怎么搭建工作流?

一、工作流的基本概念与作用

1、工作流:多任务、多步骤的自动化处理

在扣子(Coze)平台中,工作流是指将多个任务或操作按顺序和逻辑进行组合,通过自动化的方式来处理复杂的业务场景。

每个工作流包括多个节点,每个节点可以包含具体的操作、任务或处理步骤。 通过这种方式,工作流能够使不同的工具、插件及模型协同工作,以便实现更高效、更准确的任务执行。

img

2、工作流如何提高业务效率:自动化与智能协同

借助工作流的自动化能力,企业可以显著提高任务执行的效率。

工作流不仅能减轻人工操作的负担,还能通过优化流程,使得任务能够以最短的时间完成。

此外,工作流通过将多个独立任务的处理逻辑连接起来,实现了工具和系统之间的智能协作,进而提升了业务运作的效率和准确性。

以下是一个简单的工作流:

img

简单来讲,工作流就是为了完成预设目标,所拆解的一系列步骤组合在一起的流程。

二、提示词与工作流的互补性

1、提示词的局限:适用于简单场景,但无法处理复杂业务

提示词(Prompt)通常用于单轮、简单的交互任务。例如,它能够帮助模型理解用户的问题并进行直接回答。

然而,当遇到复杂的业务流程,尤其是涉及多步骤决策、跨系统联动等情况时,单纯依靠提示词将无法满足需求。

提示词不具备处理多任务和多节点协作的能力。

2、工作流的优势:应对多节点决策、跨系统联动与动态环境适应

工作流能够将多个简单任务组合成一个复杂的业务流程,通过不同的决策节点来引导执行路径。

例如,客户投诉的处理流程不仅仅包括答复客户,还需要触发一系列后续操作,如生成工单、判定责任、制定补偿方案等。

工作流能够在这种情况下自动管理任务流程,并确保在不同环节间的协同高效执行。

三、工作流的重要性:六大核心价值

1、复杂任务管理:从单一任务到多节点业务流转

工作流不仅适用于简单的任务处理,它还能够在面对复杂的多节点决策时保持高效。

通过可视化的流程设计,工作流将复杂的任务转化为可操作的步骤,并通过条件判断、并行处理等功能,使得任务执行能够灵活应对各种业务需求。

2、跨系统整合:自动化的系统交互与API调用

工作流具有强大的系统整合能力,可以与其他系统(如CRM、ERP、数据库等)进行无缝对接,实现跨平台的数据传输与操作。

例如,工作流能够根据用户需求查询CRM系统记录、生成自动响应或优惠方案,确保各项任务能够跨系统执行而不需要人工干预。

3、实时响应与适应:动态环境中的流程调整与响应

工作流具有实时调整和动态响应的能力。例如,当库存量低于预设值时,系统能够自动触发补货流程,这使得工作流可以适应不断变化的环境。

这种动态调整能力确保了工作流在面对变化时,能够快速调整并执行适当的操作,从而保证业务流程的稳定性和连续性。

4、精细化质量控制:多重校验与实时反馈机制

在工作流中,可以通过设置多个校验节点来确保每一阶段的质量。

例如,可以设定AI的初步回复后,进行合规性检查,之后进行人工抽检。

这一系列的控制措施不仅能有效防止错误,还能够为后续的任务提供反馈机制,确保流程的合规性和质量控制。

5、资源与负载调度:优化资源分配与成本控制

工作流在资源管理方面具有很大优势。 通过智能路由机制,工作流可以在处理简单任务时使用轻量级模型,而在面对复杂任务时则使用更强大的模型(如GPT-4)。

同时,工作流还可以通过流量削峰和请求缓存等策略进行优化,确保系统在高峰期也能稳定运行,并在资源使用上进行合理的成本控制。

6、企业级可维护性:高效管理与系统监控

工作流的可维护性也远高于单一提示词。

通过版本控制,企业可以逐步优化工作流的各个环节,实施灰度发布或AB测试等策略。

此外,工作流的可视化监控功能可以实时查看每个节点的执行情况,包括耗时、错误率等,从而便于管理者进行优化和调整,确保工作流在企业级别上持续可靠地运行。

四、核心区别对比:提示词与工作流

img

通过上述对比,我们可以看到提示词和工作流各自有其独特的优势和局限。

提示词更多地应用于单一的任务场景,而工作流则更适合复杂的业务流程和多系统协作,能够提供更高效、更可控的解决方案。

五、如何构建和使用工作流

1、设定工作流节点与模块化设计

在创建工作流时,可以根据实际业务需求将任务拆解为多个节点,每个节点执行具体的操作或任务。

工作流的模块化设计使得流程可以灵活调整和优化,以满足不同的业务场景。

2、集成大语言模型(LLM)和自定义配置

工作流能够集成大语言模型(LLM),并通过自定义配置来调整模型的行为。 这种配置允许开发者根据具体需求优化模型的输出,并确保工作流的执行更加稳定、准确。

3、示例:创建一个简单的工作流并监控优化

例如,在客户服务场景中,可以设计一个简单的工作流来识别客户的需求、生成回复、自动查询相关系统信息,并根据结果提供不同的解决方案。

通过监控工作流的每个节点,管理者可以实时优化流程,提升服务质量和效率。

img

img以上就是一个书籍卡片制作的工作。知恩给你提工作流的出现,让自动化的智能协同更加的精确和高效。

六、工作流与自动化业务的未来

1、企业自动化的关键:系统化流程与AI协同

工作流的核心优势在于其系统化和自动化的能力,使得企业能够在AI驱动下,精确、高效地处理各类复杂业务任务。

未来,随着技术的进步,工作流将更加智能化,能够适应更复杂的业务需求,推动企业的数字化转型。

2、工作流带来的业务优化与创新机会

通过引入工作流,企业能够从根本上优化其业务流程,提升响应速度和服务质量。

同时,工作流的灵活性和可扩展性为企业带来了更多创新机会,使得在处理日益复杂的业务场景时,能够实现高效自动化,从而获得更大的市场竞争力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 关于DeepSeek智能体的训练方法 对于希望深入了解并实践DeepSeek智能体训练过程的用户来说,官方提供了详尽的教学资源和支持材料。具体而言,在《DeepSeek+Coze扣子搭建智能体(保姆级教程)》中提到,该平台特别注重用户体验优化,旨在降低进入门槛,使更多非专业人士也能轻松参与到AI项目的创建当中[^1]。 #### 准备阶段 在准备阶段,建议先熟悉DeepSeek的基础架构及其核心组件的功能特性。此期间可以参考官方文档来获取必要的理论知识和技术背景介绍。此外,《10秒构建AI智能体!容智基于DeepSeek颠覆式开发平台让效率飞升!》一文中强调了通过简化的工作流配置界面,即使是不具备深厚编程功底的业务分析师也可以迅速上手操作[^3]。 #### 实践指导 当准备好基础知识之后,就可以按照实际需求选择合适的场景来进行深入学习: - **简易入门**:如果只是想要初步尝试,则可以从简单的文本生成任务入手,利用预置模板快速建立自己的第一个智能应用实例。 - **高级定制**:针对有更高要求的应用场合,如复杂对话系统的开发或是特定领域内的专业知识问答机器人等,则需掌握更加精细的数据标注技巧以及调参策略。此时,《Deep seek R1本地部署,添加智能体教程》将成为重要的参考资料,它不仅涵盖了环境设置方面的细节说明,还给出了连接外部API接口的具体步骤指引[^4]。 #### 性价比优势 值得注意的是,相较于其他同类产品,DeepSeek系列模型展现出显著的成本效益特点。例如,在保持高水平性能的同时大幅减少了所需的硬件投入和时间消耗——据公开资料显示,2023年完成一次完整的R1版本迭代仅支出了约600万美元的资金规模,远远低于竞争对手所公布的数值水平[^2]。 ```python # Python代码片段用于展示如何加载预训练好的DeepSeek模型 from deepseek import load_model, preprocess_input model = load_model('path/to/deepseek-r1') input_data = "your input text here" processed_input = preprocess_input(input_data) output = model.predict(processed_input) print(output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值