详解ChatBI Agent架构:打造高效数据统计系统

随着人工智能技术的迅猛发展,智能对话系统在各行各业中的应用越来越广泛。本文将介绍一种名为ChatBI Agent的架构设计,并以电信运营商系统的经分数据统计Agent为案例,结合具体的代码实现,帮助读者了解这一系统的设计理念和实现方式。

一、架构总览

ChatBI Agent的架构图分为四个主要模块:规划模块、工具模块、行动模块和记忆模块。每个模块都有其独特的功能和相互协作的机制,确保系统能够高效、准确地完成各种复杂任务。

二、 规划模块 (Planning)

规划模块是ChatBI Agent的核心部分之一,负责任务的规划和策略制定。它包括以下几个子模块:

  • 思维树 (Tree of Thoughts)

思维树通过构建一个树状结构,帮助系统在复杂问题中找到最优解。这一模块利用层次化思维方式,对问题进行分解和递进处理,确保在每个步骤上都能做出最优决策。

class TreeOfThoughts:`    `def __init__(self):`        `self.tree = {}``   `    `def add_thought(self, level, thought):`        `if level not in self.tree:`            `self.tree[level] = []`        `self.tree[level].append(thought)``   `    `def get_optimal_path(self):`        `optimal_path = []`        `for level in sorted(self.tree.keys()):`            `optimal_path.append(self.tree[level][0])  # 简化处理,只取每层的第一个思维`        `return optimal_path``   
  • Few Shot 学习

Few Shot 学习是一种少样本学习方法,通过少量示例数据进行模型训练,使系统能够快速适应新任务。此方法极大地提高了模型的泛化能力和适应性。

from transformers import GPT2LMHeadModel, GPT2Tokenizer``   ``class FewShotLearner:`    `def __init__(self, model_name='gpt2'):`        `self.tokenizer = GPT2Tokenizer.from_pretrained(model_name)`        `self.model = GPT2LMHeadModel.from_pretrained(model_name)``   `    `def generate_text(self, prompt, max_length=50):`        `inputs = self.tokenizer.encode(prompt, return_tensors='pt')`        `outputs = self.model.generate(inputs, max_length=max_length, num_return_sequences=1)`        `return self.tokenizer.decode(outputs[0], skip_special_tokens=True)``   
  • Chain of Thought

Chain of Thought模块通过连贯的思维链条,帮助系统在复杂任务中保持逻辑一致性。每一步的推理结果都会作为下一步的输入,形成一个连贯的思维过程。

class ChainOfThought:`    `def __init__(self):`        `self.chain = []``   `    `def add_thought(self, thought):`        `self.chain.append(thought)``   `    `def get_chain(self):`        `return ' -> '.join(self.chain)``   
  • Least to Most

Least to Most是一种从简单到复杂的任务处理策略。通过先解决简单问题,再逐步攻克复杂问题,确保系统在处理过程中始终保持高效和准确。

class LeastToMost:`    `def __init__(self, tasks):`        `self.tasks = sorted(tasks, key=lambda x: x['complexity'])``   `    `def execute_tasks(self):`        `results = []`        `for task in self.tasks:`            `results.append(self.execute_task(task))`        `return results``   `    `def execute_task(self, task):`        `# 具体任务执行逻辑`        `return f"Executed task: {task['name']}"``   
  • 复杂任务解释

复杂任务解释模块负责将复杂的任务分解为可管理的子任务,并为每个子任务制定详细的执行计划。这一模块的存在,确保了系统能够应对各种复杂和多变的任务需求。

class ComplexTaskDecomposer:`    `def decompose(self, task):`        `sub_tasks = []`        `# 分解任务的具体逻辑`        `return sub_tasks``   
  • 自动Debug

自动Debug模块通过自动化调试和错误修复,提升系统的稳定性和可靠性。当系统在执行过程中遇到错误时,能够自动检测并进行修正,确保任务顺利完成。

class AutoDebugger:`    `def debug(self, process):`        `try:`            `process.run()`        `except Exception as e:`            `self.fix_error(e)``   `    `def fix_error(self, error):`        `# 错误修复逻辑`        `pass``   ``   

三、工具模块 (Tools)

工具模块为ChatBI Agent提供了各种必要的工具和平台支持,确保系统能够高效完成各项任务。

  • Python代码解析器

Python代码解析器能够解析和执行Python代码,使系统能够进行各种复杂的数据处理和计算任务。

def execute_python_code(code):`    `exec(code)``   
  • SQL代码解释器

SQL代码解释器负责解析和执行SQL查询,帮助系统从数据库中提取和处理数据。

import mysql.connector``   ``def execute_sql_query(query):`    `conn = mysql.connector.connect(user='user', password='password', host='localhost', database='database')`    `cursor = conn.cursor()`    `cursor.execute(query)`    `result = cursor.fetchall()`    `cursor.close()`    `conn.close()`    `return result``   
  • MySQL平台

MySQL平台为系统提供了一个稳定和高效的数据库管理平台,确保数据的存储和检索高效可靠。

class MySQLPlatform:`    `def __init__(self, config):`        `self.conn = mysql.connector.connect(**config)``   `    `def query(self, sql):`        `cursor = self.conn.cursor()`        `cursor.execute(sql)`        `result = cursor.fetchall()`        `cursor.close()`        `return result``   `    `def close(self):`        `self.conn.close()``   
  • 大数据平台

大数据平台使系统能够处理和分析海量数据,支持各种大数据应用场景,为系统提供强大的数据分析能力。

from pyspark.sql import SparkSession``   ``class BigDataPlatform:`    `def __init__(self):`        `self.spark = SparkSession.builder.appName("BigDataApp").getOrCreate()``   `    `def process_data(self, data):`        `df = self.spark.createDataFrame(data)`        `# 数据处理逻辑`        `return df.collect()``   

四、行动模块 (Action)

行动模块负责执行系统的各种任务和操作,通过与用户的交互,实现各种复杂的对话和任务处理。

  • 公开对话

公开对话模块使系统能够进行开放式对话,与用户进行多轮互动,确保对话的连贯性和逻辑性。

class PublicDialogue:`    `def __init__(self):`        `self.dialogue_history = []``   `    `def add_message(self, message):`        `self.dialogue_history.append(message)``   `    `def get_dialogue(self):`        `return '\n'.join(self.dialogue_history)``   
  • 多轮对话

多轮对话模块通过记录和管理对话历史,确保系统能够在长时间对话中保持上下文一致性和逻辑连贯性。

class MultiTurnDialogue:`    `def __init__(self):`        `self.turns = []``   `    `def add_turn(self, user_message, agent_response):`        `self.turns.append((user_message, agent_response))``   `    `def get_full_dialogue(self):`        `return '\n'.join([f"User: {t[0]}\nAgent: {t[1]}" for t in self.turns])``   

五、 记忆模块 (Memory)

记忆模块负责管理和存储系统的各种记忆信息,确保系统能够在复杂对话中保持信息的连贯性和一致性。

  • 长期记忆

长期记忆模块负责存储系统的长期知识和信息,包括历史对话和业务知识,确保系统在长期任务中能够保持稳定和一致。

class LongTermMemory:`    `def __init__(self):`        `self.memory = []``   `    `def add_memory(self, info):`        `self.memory.append(info)``   `    `def get_memory(self):`        `return self.memory``   
  • 短期记忆

短期记忆模块负责存储系统的短期对话信息,确保系统在当前对话中能够准确记忆和调用相关信息。

class ShortTermMemory:`    `def __init__(self):`        `self.memory = []``   `    `def add_memory(self, info):`        `self.memory.append(info)``   `    `def get_memory(self):`        `return self.memory``   

六、iQuery Agent的集成与工作流程

iQuery Agent作为ChatBI Agent的核心,负责将各个模块集成在一起,并通过协调各模块的工作,完成复杂任务。其工作流程如下:

  • 任务规划:根据用户需求,由规划模块制定任务策略。

  • 工具调用:根据任务需求,调用相应的工具模块进行数据处理。

  • 执行任务:通过行动模块与用户进行交互,执行任务。

  • 记忆管理:在任务执行过程中,记忆模块负责管理和存储各种记忆信息,确保对话的连贯性和一致性。

七、实际应用案例

电信运营商系统经分数据统计Agent

为了更好地理解ChatBI Agent的工作原理,我们通过一个实际应用案例来展示其具体的应用场景。

案例:电信运营商系统的经分数据统计Agent

  • 任务需求:电信运营商需要对过去一年的用户数据进行统计分析,并生成详细报告。

  • 任务规划:规划模块制定数据分析策略,确定数据提取、处理和分析步骤。

  • 工具调用:调用SQL代码解释器从MySQL平台中提取用户数据,并通过Python代码解析器进行数据处理和分析。

  • 执行任务:通过行动模块与运营商进行多轮对话,获取详细需求,并生成报告。

  • 记忆管理:记忆模块记录和存储数据分析过程中的各种信息,确保分析结果的连贯性和准确性。

  • 代码实现:

# 配置MySQL连接``config = {`    `'user': 'user',`    `'password': 'password',`    `'host': 'localhost',`    `'database': 'telecom'``}``   ``# 创建MySQL平台实例``mysql_platform = MySQLPlatform(config)``   ``# 从数据库中提取用户数据``user_data_query = "SELECT * FROM user_data WHERE date BETWEEN '2023-01-01' AND '2023-12-31'"``user_data = mysql_platform.query(user_data_query)``   ``# 使用Python代码解析器进行数据处理和分析``python_code = """``import pandas as pd``   ``def analyze_data(data):`    `df = pd.DataFrame(data, columns=['user_id', 'usage', 'date'])`    `report = df.groupby('user_id').agg({'usage': 'sum'}).reset_index()`    `return report.to_dict()``   ``analyze_data(user_data)``"""``exec(python_code)``   ``# 模拟与运营商进行多轮对话``dialogue = MultiTurnDialogue()``dialogue.add_turn("请提供过去一年的用户数据统计报告。", "好的,我们正在处理您的请求。")``dialogue.add_turn("报告已生成,请查看。", "谢谢。")``   ``# 显示对话历史``print(dialogue.get_full_dialogue())``   ``# 关闭MySQL连接``mysql_platform.close()``   

八、总结

通过对ChatBI Agent架构的详细解析,并结合电信运营商系统的经分数据统计Agent的实际应用案例和代码实现,我们可以看到其在任务规划、工具调用、任务执行和记忆管理等方面的强大能力。该系统通过各个模块的协同工作,能够高效、准确地完成各种复杂任务,具有广泛的应用前景。希望本文能够帮助大家更好地理解和应用ChatBI Agent,为企业智能化发展提供有力支持。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 31
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值