在这个信息爆炸的时代,数据就是力量。尤其是对于开发者来说,获取并利用好数据,就意味着拥有更多的主动权和竞争力。
无论是用来训练大语言模型,还是用于增强检索生成(RAG),数据都扮演着至关重要的角色。而在这样一个数据为王的环境下,能够高效地抓取网页数据的工具就显得尤为重要了。
今天我想和大家分享一款我最近发现的宝藏开源工具:FireCrawl。
这款工具可谓是网页爬虫界的顶流,不仅功能强大,还非常好用,尤其是对于那些需要大量爬取和处理网页数据的项目,FireCrawl 简直就是神器。
01.FireCrawl 项目简介
Firecrawl 是一款开源、优秀、尖端的 AI 爬虫工具,专门从事 Web 数据提取,并将其转换为 Markdown 格式或者其他结构化数据。
Firecrawl 还特别上线了一个新的功能:LLM Extract,即利用大语言模型(LLM)快速完成网页数据的提取,从而转换为LLM-ready的数据。
所以无论你是需要为大语言模型(如 GPT)提供数据训练,还是需要为检索增强生成(RAG)获取高质量数据,FireCrawl 都能够为你提供全面的支持。
02.主要功能
-
强大的抓取能力:几乎能抓取任何网站的内容,无论是简单的静态页面,还是复杂的动态网页,它都能够应对自如。
-
智能的爬取状态管理:提供了分页、流式传输等功能,使得大规模网页抓取变得更加高效。此外,它还具备清晰的错误提示功能,让你在爬取过程中可以快速排查问题,保证数据抓取的顺利进行。
-
多样的输出格式:不仅支持将抓取的内容转换为 Markdown 格式,还支持将其输出为结构化数据(如 JSON)。
-
增强 Markdown 解析:优化 Markdown 解析逻辑,能够输出更干净、更高质量的文本。
-
全面的 SDK 支持:提供了丰富的 SDK,支持多种编程语言(如 Go、Rust 等),并全面兼容 v1 API。
-
快速收集相关链接:新增了/map 端点,可以快速收集网页中的相关链接。这对于需要抓取大量相关内容的用户来说,是一个极其高效的功能。
03.FireCrawl应用场景
1. 大语言模型训练
通过抓取海量网页内容并将其转换为结构化数据,FireCrawl 能够为大语言模型(如 GPT)提供丰富的训练数据。
这对于希望提升模型表现的开发者或企业来说,FireCrawl 是一个理想的工具。
2. 检索增强生成(RAG):
FireCrawl 可以帮助用户从不同网页中获取相关数据,支持检索增强生成(RAG)任务。这意味着你可以通过 FireCrawl 获取并整理数据,用于生成更加精确、更加丰富的文本内容。
3. 数据驱动的开发项目
如果你的项目依赖大量的网页数据,比如训练语言模型、构建知识图谱、数据分析等等,FireCrawl 是一个不二之选。
它可以帮助你快速获取所需数据,并将其转换为你需要的格式,无论是 Markdown 还是 JSON,都能轻松搞定。
4. SEO 与内容优化
对于那些需要进行 SEO 优化或内容监控的项目,FireCrawl 也非常适用。
你可以利用 FireCrawl 爬取竞争对手的网站内容,分析他们的 SEO 策略,或者监控网站内容的变化,帮助你优化自己的网站。
5. 在线服务与工具集成
FireCrawl 提供了易于使用且统一的 API,支持本地部署或在线使用。
你可以将 FireCrawl 无缝集成到现有的服务或工具中,如 Langchain、Dify、Flowise 等,进一步扩展其应用能力。
04.安装与使用
当然 FireCrawl 是支持本地部署的,通过源码进行部署安装服务,但是依赖的语言过多,不仅有Nodejs、Python,还有Rust!还是建议在线体验!
前置条件
需要先注册 Firecrawl 并获取 API key。
使用方式
官方项目中列了很多通过curl接口命令的方式,其实这样就有些繁琐!
我们可以通过各种API工具来进行请求,使用体验会更好一些。
也可以通过官方部署的网页上功能来进行,效果会更加!
最后就是开发者常用的SDK方式,这里以Python语言为例:
- 安装 Python SDK
pip install firecrawl-py
- 调用接口,抓取目标网页数据
from firecrawl import FirecrawlApp app = FirecrawlApp(api_key="YOUR_API_KEY") crawl_result = app.crawl_url('mendable.ai', {'crawlerOptions': {'excludes': ['blog/*']}}) # Get the markdown for result in crawl_result: print(result['markdown'])
- 要抓取单个 URL,需要使用 scrape_url 方法。将 URL 作为参数,并以字典形式返回抓取的数据。
url = 'https://www.xxxx.com' scraped_data = app.scrape_url(url)
总结
作为一名开发者,我们都知道,一个好用的工具可以大大提高我们的工作效率,而 FireCrawl 就是这样一个值得推荐的工具。
无论你是需要爬取大量数据,还是需要将网页内容转换为文档,FireCrawl 都能够帮助你轻松实现这些需求。
🔗****开源地址
开源地址:https://github.com/mendableai/firecrawl
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。