Metabase 是一个开源的商业智能(BI)工具,帮助用户轻松地从数据库中提取数据,并将其转化为易于理解的图表和仪表板。与传统的 BI 工具相比,Metabase 不需要用户具备编写 SQL 的能力,非技术人员也能通过简单的操作创建有用的报告和可视化数据分析。
Metabase主要特性
-
「部署便捷」:比传统的 BI 应用安装要简单很多,Metabase 只有主程序+数据库两个服务,只需五分钟内即可完成部署。
-
「简洁的用户界面」:Metabase 的用户界面设计直观,适合技术和非技术人员使用。用户可以通过简单的点击和拖放操作快速创建查询和可视化。
-
「无需编写 SQL 的查询构建器」:Metabase 提供了一个图形化的查询构建器,无需编写 SQL 代码即可构建复杂的查询。只需选择数据源和表格,设定过滤条件、分组和排序,系统会自动生成相应的 SQL 查询。
-
「丰富的可视化选项」:Metabase 提供了多种可视化图表类型,包括柱状图、折线图、饼图、面积图、散点图、地图等。可以根据数据特点选择合适的图表类型,帮助团队直观地分析数据。
-
「动态仪表板」:Metabase 支持创建动态仪表板,可以将多个查询结果整合到一个页面上,并通过动态过滤器实时调整数据展示。仪表板可以轻松分享给团队成员,促进协作。
-
「定时报告和警报」:Metabase 支持定时报告功能,允许设置自动发送查询结果的频率和接收人。还可以设置警报,当数据达到预设的条件时,系统会自动发送通知。
-
「多种数据源支持」:Metabase 支持连接多种数据源,包括 MySQL、PostgreSQL、MongoDB、SQL Server、Google BigQuery 等。
-
「权限管理」:Metabase 提供了细粒度的权限管理,管理员可以控制用户对数据源、表格、查询和仪表板的访问权限。这确保了敏感数据的安全性,同时允许不同团队根据需要访问数据。
-
「API 集成」:Metabase 提供了 REST API,用户可以通过编程接口自动化查询、导出数据、管理仪表板和执行其他操作,可以与其他系统无缝集成,成为企业数据工作流的一部分。
Metabase使用场景
个人使用场景
对于个人用户,Metabase 是一个非常方便的工具,可以帮助我们分析和可视化个人项目或小型业务的数据。
- 「个人项目数据分析」:个人开发者或数据爱好者可以使用 Metabase 来分析他们的个人项目数据,如网站流量、个人博客的访问量、应用程序的用户行为等。
团队使用场景
对于团队而言,Metabase 提供了一个协作平台,帮助团队成员共同分析和分享数据。
-
「产品开发团队的数据监控」:产品经理和开发团队可以使用 Metabase 监控产品的关键指标,如用户活跃度、功能使用率和错误报告等。这些数据可以帮助团队做出数据驱动的产品改进决策。
-
「营销团队的活动分析」:营销团队可以使用 Metabase 分析广告活动的效果、网站流量来源、转化率等数据,并通过可视化图表向团队成员或管理层展示活动成果。
-
「运营团队的业务监控」:运营团队可以使用 Metabase 实时监控业务的关键运营指标,如库存水平、订单处理速度、客户服务响应时间等,并设置警报以在指标异常时及时采取行动。
业务使用场景
在业务层面,Metabase 可以作为企业级数据分析和商业智能工具,支持更复杂和广泛的业务需求。
-
「业务分析」:大型企业可以使用 Metabase 集成来自不同部门的数据源,如销售、市场、财务和运营,进行统一的数据分析和报告。
-
「客户数据洞察」:企业可以使用 Metabase 深入分析客户行为和需求,通过分析购买模式、客户满意度调查结果等数据,定制个性化服务或产品。
Metabase 部署
Metabase 部署非常简单,支持在任何有 Java 的环境中使用 Java 运行,同时也提供了 Docker 镜像。更多请参阅 Metabase 部署文档[1]。
Docker 部署
Metabase 提供了使用 Docker 镜像的部署方式,但 Metabase 镜像存放在 Docker Hub 上了,目前从国内无法访问 Docker Hub 镜像,因此 Rainbond 提供了镜像加速的方式,部署方式如下:
docker run -d -p 3000:3000 --name metabase docker.rainbond.cc/metabase/metabase:latest
Rainbond 部署
对于不熟悉 Kubernetes 的伙伴,又想在 Kubernetes 中安装 Metabase,可以使用 Rainbond 来部署。Rainbond 是一个无需了解 Kubernetes 的云原生应用管理平台,可以很简单的将你的应用部署到 Kubernetes中。
首先需要在你的服务器上部署 Rainbond,只需一条命令即可完成部署,更多部署方式请参阅 Rainbond 部署文档[2]。
curl -o install.sh https://get.rainbond.com && bash ./install.sh
部署完成后,进入 Rainbond 平台,选择通过应用市场部署,在开源应用商店中搜索Metabase
并进行一键安装。
部署完成后拓扑图如下,Rainbond 的 Metabase 应用模板提供了生产可用的 Metabase,包含 Metabase 和 PG 数据库两个服务。
这时点击访问按钮即可访问到 Metabase Web页面,开启你的数据分析之旅~
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。