你是否曾经遇到过这样的情况:向ChatGPT提问专业问题时,它给出的答案看似合理,但实际上缺乏深度或存在事实错误?今天,我们将探索一项解决这一问题的前沿技术——图检索增强生成(GraphRAG),这项结合知识图谱与检索增强生成的创新方法正在彻底改变AI在专业领域的应用方式。
引言
大语言模型(LLM)如GPT系列在文本理解、问答和内容生成等多种任务上取得了令人瞩目的突破。然而,当面对需要专业领域知识的任务时,这些模型往往表现不佳。这主要是因为如下三个原因:
- 知识局限性:LLM的预训练知识在专业领域往往广而不深;
- 推理复杂性:专业领域需要精确的多步推理,而LLM难以在长推理链中保持逻辑一致性;
- 上下文敏感性:专业领域中同一术语在不同情境下可能有不同含义,LLM常常无法捕捉这些细微差别。
传统RAG的挑战与局限
传统的检索增强生成(RAG)技术通过引入外部知识库,在一定程度上改善了大语言模型的表现。然而,当面对复杂的专业问题时,传统RAG仍然面临三大挑战:
- 复杂查询理解困难:专业领域的问题往往涉及多个实体和复杂关系,传统RAG基于向量相似度的检索方法难以捕捉这些复杂语义关系。给定一个查询,这些RAG方法只能从包含锚实体的文本块中检索信息,无法进行多跳推理。随着粒度的减小,这一限制在处理领域知识时变得更加明显。
- 分散知识整合不足:领域知识通常分散在各种文档和数据源中。虽然RAG使用分块来将文档分割成更小的片段以提高索引效率,但这种方法牺牲了关键的上下文信息,显著降低了检索准确性和上下文理解能力。此外,向量数据库存储文本块时没有对模糊或抽象概念进行层次组织,使得解决此类查询变得困难。
- 系统效率瓶颈:传统RAG通常使用基于向量相似度的检索模块,缺乏对从庞大知识库中检索内容的有效过滤,提供过多但可能不必要的信息。考虑到LLM固有的限制,如固定的上下文窗口(通常为2K-32K标记),难以从过多的检索内容中捕获必要信息。虽然扩展块粒度可以缓解这些挑战,但这种方法显著增加了计算成本和响应延迟。
这些挑战促使研究人员开发出GraphRAG——一种结合知识图谱与检索增强生成的创新技术,旨在解决传统RAG的局限性。
GraphRAG技术介绍
GraphRAG(图检索增强生成)通过将知识图谱与检索增强生成相结合,从根本上提升了大语言模型处理专业知识的能力。与传统RAG不同,GraphRAG将文本转换为结构化知识图谱,明确标注实体间关系,然后基于图遍历和多跳推理检索相关知识子图,最后保持知识结构生成连贯回答。这种方法的核心优势在于能够发现概念间的隐含关联,支持多步推理解决复杂问题,并提供可解释的推理路径。
工作流程
GraphRAG的工作流程可分为三个关键阶段:首先是知识图谱构建,通过自动提取实体和关系形成结构化知识网络;其次是图检索,根据问题定位相关节点并沿关系路径智能扩展;最后是知识融合,将检索到的结构化知识整合成连贯一致的回答,保留原始知识的逻辑关系。这种流程使AI能够像人类专家一样,通过关联不同知识点来解决复杂问题。
GraphRAG与传统RAG的对比
传统RAG与GraphRAG在整个工作流程上存在本质差异。传统RAG采用简单直接的三步流程:首先将文档分割成独立文本块并向量化存储;然后基于语义相似度检索与查询相关的片段;最后简单拼接这些片段作为LLM的上下文生成回答。这种方法虽然实现简单,但难以捕捉复杂的知识关联,常常导致上下文碎片化和推理能力有限。
相比之下,GraphRAG采用更为精细的三阶段工作流程:在知识组织阶段,它不仅提取文本,还识别实体与关系,构建结构化知识图谱;在知识检索阶段,通过图遍历和多跳推理发现隐藏的知识关联,形成完整的知识子图;在知识集成阶段,保留知识的结构关系,融合多源信息并消除冗余,生成连贯且可解释的回答。这种方法特别适合处理需要综合多源信息、进行深度推理的专业领域问题,如医疗诊断、法律分析和科研探索等,同时支持知识的增量更新,维护成本更低。GraphRAG的核心优势在于它不仅能够回答"是什么"的问题,还能解释"为什么"和"如何",为复杂问题提供更深入的解答。
结语
GraphRAG通过引入结构化知识图谱,成功解决了传统RAG在专业领域的核心挑战。这项技术在医疗诊断、金融分析和法律咨询等场景中展现出独特优势,能够连接复杂知识网络、揭示隐藏关联并保持推理路径的可解释性,使AI真正成为专业领域的智能助手。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。