Qwen 2.5-VL:LLM->VLM又进一步,未来属于多模态模型

视觉语言模型(Vision-Language Model,VLM)是人工智能领域的重要研究方向,旨在实现对视觉和语言信息的联合理解和生成。

VLM 通常采用深度学习架构,特别是 Transformer 模型,来处理和融合图像与文本数据。 这些模型通过预训练和微调策略,学习从大规模图像-文本对中提取联合特征表示,从而在多种视觉和语言任务中表现出色。

VLM 的发展经历了以下几个关键阶段:

  1. 初期探索:早期的研究主要关注图像描述生成和视觉问答等任务,采用传统的卷积神经网络(CNN)和循环神经网络(RNN)相结合的方法。

  2. Transformer 的引入:2017年,Transformer 架构的提出为 VLM 的发展奠定了基础。 随后,BERT 和 GPT 等预训练语言模型的出现,进一步推动了 VLM 的研究进展。

  3. 多模态预训练:近年来,研究者们提出了多模态预训练方法,如CLIP和DALL·E,利用大规模的图像-文本数据进行联合训练,显著提升了模型的性能。

目前,VLM 在多个领域取得了显著进展,包括:

  • 跨模态检索:模型能够根据文本描述检索相关图像,或根据图像生成相应的文本描述。

  • 图像生成:基于文本提示生成高质量的图像,如OpenAI的DALL·E系列模型。

  • 视觉问答:在给定图像的情况下,模型能够回答与之相关的问题。

未来,VLM 有望在以下方面取得更大的突破:

  • 多模态大模型:随着计算能力的提升,训练更大规模的多模态模型将成为可能,进一步提升模型的泛化能力和应用范围。

  • 跨领域应用:VLM 有望在医疗、教育、娱乐等多个领域得到广泛应用,提供更智能的服务。

  • 模型优化:研究者将致力于提升模型的效率和可解释性,解决当前模型在推理速度和透明度方面的挑战。

综上所述,视觉语言模型作为人工智能领域的重要研究方向,正朝着更高效、更智能的方向发展,未来有望在各个领域发挥更大的作用。

Qwen 2.5-VL 是阿里巴巴通义千问系列的旗舰视觉语言模型。Qwen 2.5-VL 通过动态分辨率处理、视频的绝对时间编码以及为边缘和云部署重新设计的 Vision Transformer(ViT)在 3B/7B/72B 变体中展示了最先进的性能。 👀

性能亮点

  • 多模态处理能力: Qwen 2.5-VL 能够精准识别物体、解析复杂图像内容,并理解长达一小时以上的视频,在视觉问答、文档解析和视频理解等任务中表现出色。

  • 文档解析: 该模型能够将非结构化数据(如发票、表单)转换为结构化格式(如 JSON),特别适用于自动生成财务报告和法律文档等场景。

  • 视觉智能体功能: Qwen 2.5-VL 可作为视觉智能体执行多步骤任务,如查询天气、订机票等,通过指导使用各种工具,在电脑和移动设备上轻松完成。

技术优势

  • 动态分辨率处理: 原生支持从4K到224px的图像输入,增强了对不同尺寸图像的处理能力。

  • MRoPE(多模态旋转位置编码)****: 与绝对时间对齐,提升了模型对时间信息的理解能力。

  • 窗口注意力机制**:** 使得 ViT 计算量减少 40%,提高了模型的计算效率。

应用场景

  • 融行业 自动生成财务报告、解析发票和表单等。

  • 法律领域: 处理法律文档、合同分析等。

  • 客户服务: 提供基于视觉的智能客服,处理客户查询和问题解答。

  • 教育行业: 辅助教学材料的生成和图像内容的解析。

总体而言,Qwen 2.5-VL 凭借其强大的多模态处理能力和高效的计算性能,在多个领域展现出广泛的应用前景。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Qwen2.5-VLQwen2.5-Instruct 的区别 #### 架构设计上的差异 Qwen2.5-VL 系列相较于 Qwen2.5-Instruct,在模型架构上有显著的不同。Qwen2.5-VL 针对多模态任务进行了优化,其网络结构被进一步简化以增强对时间与空间尺度的感知能力[^1]。这种改进使得 Qwen2.5-VL 更适合处理涉及图像、视频以及其他复杂数据形式的任务。 相比之下,Qwen2.5-Instruct 主要专注于纯文本输入场景下的指令跟随性能提升。它通过强化训练来提高对话理解和生成质量,适用于自然语言处理中的问答、翻译以及代码生成等领域。 #### 性能表现的区别 由于上述架构调整,Qwen2.5-VL 在运行效率方面有所改善,并且能够在多项视觉语言综合评测指标上取得优异成绩,甚至优于某些国际知名竞品(如 GPT-4o-mini)。而 Qwen2.5-Instruct 则更侧重于文字交互体验流畅度和准确性方面的突破。 ### 应用场景对比分析 #### 多模态领域应用-Qwen2.5-VL 对于需要融合多种感官信息的应用场合来说,比如自动驾驶辅助系统开发过程中需要用到的道路环境识别功能;或者医疗健康监测设备里涉及到的人体生理参数可视化展示部分,则可以优先考虑采用具备更强时空理解力特性的 Qwen2.5-VL 模型来进行技术支持。 以下是基于 vLLM 平台部署该版本的具体操作方法示例: ```bash HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download Qwen/Qwen2.5-VL-7B-Instruct ``` 启动服务端口监听命令如下所示: ```python import vllm from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") model = vllm.LLM("Qwen/Qwen2.5-VL-7B-Instruct", tokenizer=tokenizer) # Start the server with a specific port number. server = model.start_server(port=8090) ``` #### 文本处理方向适用-Qwen2.5-Instruct 当项目需求集中于文档摘要提取、情感倾向判断或是创意写作支持等方面时,那么选择经过专门调校过的 Qwen2.5-Instruct 将会更加合适一些。这类应用场景通常只需要依赖高质量的语言表达能力和逻辑推理技巧即可满足业务目标要求[^2]。 例如可以通过以下方式加载并初始化这个特定用途定制化后的实例对象用于实际生产环境中: ```python from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer model_name_or_path = 'Qwen/Qwen2.5-Instruct' tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer) result = text_generator("Write an article about artificial intelligence.", max_length=500)[0]['generated_text'] print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值