基于大模型驱动的多智能体加密货币投资组合管理框架

LLM-Powered Multi-Agent System for Automated Crypto Portfolio Management

加密货币投资面临资产定价证据不足、数据多模态需求和复杂推理等挑战,导致专业服务稀缺或昂贵。深度学习技术被研究用于加密货币投资,但其“黑箱”特性引发信任和可解释性问题。

本文提出一种可解释的多模态多代理框架,针对市值前30的加密货币进行投资决策,采用团队内外协作机制整合多模态信息。实证评估显示该框架在分类、资产定价、投资组合和可解释性方面优于单智能体模型和市场基准。

img

论文地址:https://arxiv.org/pdf/2501.00826v2

摘要

加密货币投资面临历史短、数据整合复杂和推理要求高等挑战,深度学习方法存在“黑箱”问题,缺乏信任和可解释性。大型语言模型(LLMs)在金融应用中表现出色,但在复杂任务和加密货币领域知识不足。

本文提出一种可解释的多模态多智能体框架,专门处理市值前30的加密货币的投资决策。框架包括专家训练模块和多智能体投资模块,利用历史数据和实时数据进行决策。团队内外协作机制提高预测准确性,基于信心水平调整最终预测。实证评估显示该框架在分类、资产定价、投资组合和可解释性方面优于单智能体模型和市场基准。

简介

大语言模型(LLMs)在金融领域的应用前景广阔,能够处理多模态数据并生成可解释的投资决策。单一LLM在资产预测中的表现有限,尤其在加密货币领域缺乏领域特定知识。研究者提出将复杂任务分解为子任务的方法,通过多代理协作提升推理能力。

本文提出一种可解释的多模态多代理框架,针对市值前30的加密货币进行投资决策,采用团队内外协作机制整合多模态信息。框架包含专家训练模块和多智能体投资模块,旨在进行大盘加密货币投资管理。

专家训练模块通过数据团队和文献团队获取历史多模态数据和相关投资文献,生成高质量提示以微调专家投资代理。多智能体投资模块实时获取数据,市场团队和加密团队分别分析市场和加密特定因素,最终由交易团队执行投资策略。

引入了内部和外部协作机制,增强代理间的沟通,降低预测误差。通过2023年6月至2024年9月的数据验证,框架在分类准确性和资产定价表现上优于单一代理模型,并超越市场基准。

本文主要贡献包括:首次提出多智能体框架、设计独特的协作机制、开发资产定价方法、通过微调生成高质量预测和解释、在多个性能指标上超越单一模型和市场基准。

相关工作

实证加密货币定价。加密货币作为新兴资产类别,吸引了大量研究,早期研究关注市场收益的可预测性,识别出网络活动、动量和投资者关注度等因素为强预测指标。新闻情绪对市场收益也有显著影响,发展出加密货币特定的三因子模型。尽管已有多种数据模式的预测信息,但缺乏统一模型整合这些多样数据。

投资中的大型语言模型(LLM)。LLM因其强大的文本理解和推理能力被广泛应用于投资任务,早期研究使用单一LLM进行资产价格预测,但其预测能力有限且存在偏差。近期研究转向多代理模型,如SEP框架,通过多个代理协作进行投资任务,但在加密货币投资任务中仍缺乏多代理、多模态模型。

方法

将加密货币投资过程分解为多个子任务并进行形式化。提出多智能体加密货币投资框架,包含两个主要模块:

  • 专家训练模块:利用多模态历史数据和专业投资文献对智能体进行微调。
  • 多智能体投资模块:利用实时数据做出明智的加密货币投资决策。

img

问题建模

加密货币-现金分配。给定一个向量着风险因素𝜷𝑡−1=[𝛽𝑖]𝑝×1星期𝑡−1,在p 表示因素的总数,和新闻数据N𝑡−1=[𝑁𝑖]𝑞×1星期𝑡−1,𝑞表示新闻头条的总数,目标是生成加密权重𝑤𝑡用于回报最大化img和一个人类可读的解释img

加密货币选择。给定一组加密数字货币C ={𝑐𝑖},一个矩阵crypto-specific风险因素𝜶𝑡−1=[𝛼𝑖,𝑐]𝑚×𝑛,𝑚是crypto-specific危险因素的总数和𝑛是加密的总数,和视觉数据的向量v𝑡−1=[𝑣𝑐]𝑚×1,我们的目标是产生一个子集C∗⊆C最大化aver-age未来7天返回的加密参数img和一个人类可读的解释img

整体框架

本文提出了一种可解释的多智能体框架用于加密货币投资,包含专家训练和多智能体投资两个主要组件。专家训练部分通过多智能体协作生成训练提示,结合多种数据模态及高质量解释,随后对专家代理进行微调。多智能体投资部分使专家代理管理相应的子任务,协作构建最终的加密货币投资组合。该框架旨在将复杂投资挑战分解为小的专业任务,提高预测准确性和投资组合表现。

专家训练

数据团队负责从主要加密货币提供商(如Coingecko、Blockchain.info等)获取和处理原始数据,生成多模态格式,包括价格趋势、30天蜡烛图、风险因素和新闻标题。30天蜡烛图和价格趋势基于OHLC数据和交易量,风险因素通过OHLC数据、交易量和市值计算,并分为五个等级(非常低、低、中、高、非常高)。新闻标题数据通过网络爬虫从Cointelegraph获取。

img

文献团队负责从Google Scholar检索与加密货币定价相关的学术论文。

解释团队通过结合专业的、合理的解释,将普通的训练数据对(由多模态数据和基础事实组成)转换为丰富的数据对。市场因素分析师和新闻分析师侧重于分析特定市场本周的风险因素和新闻数据,以及下周相应的市场趋势。市场因素和新闻分析师解释了市场相关信息和市场趋势之间的复杂关系,利用相关学术论文的见解。同样,加密货币分析师分析加密货币特定的风险因素和基本事实,生成详细的解释。然后,技术分析师解释单个加密货币的30天烛台图与其相应的基础真理之间的关系,提供合理的见解。最后,使用将多模态数据、基础事实和相应的解释集成到训练提示中。最后,将由四位解释分析师增强的提示输入四个LLM,以训练市场团队和加密团队的专家。

img

img

img

img

多代理投资

多代理投资组件通过多个代理的协作完成加密货币投资流程。数据团队获取并处理实时多模态数据,市场团队、加密团队和交易团队根据处理后的数据完成各自的子任务。

市场团队使用训练好的新闻专家和市场因素专家进行市场趋势预测。分析加密货币或市场信息以预测一周内价格趋势的强度。

img

市场特定数据为过去一周的情况,结合市场风险因素生成预测。为了实现团队内的协作,采用了基于预测置信度的集成方法,结合两个代理的预测结果。通过提取“Rise”的对数概率,转换为线性概率,计算最终的上升概率,若超过0.5则预测为“Rise”,否则为“Fall”。根据预测结果,若为“Rise”,投资组合全为加密货币;若为“Fall”,则加密货币与现金各占一半。

img

img

加密团队在加密货币选择任务中,结合加密因素专家和技术专家的预测,利用市场因素和新闻专家的输入进行决策。通过系统指令和相关数据,增强代理的决策过程,形成更全面的预测。

img

市场信息对加密货币价格趋势预测的直接贡献有限,但专家代理可以学习市场信息与个别加密货币之间的互动,从而提高预测准确性。加密因素专家使用个别加密货币及其特定风险因素向量进行预测,技术专家则使用30天的蜡烛图。专家生成二元分类预测(“上涨”或“下跌”)及其背后的解释。通过团队协作,专家生成每个加密货币的最终上升概率,并将其分为五个不同的投资组合(P1至P5),根据上升概率排序。最终选择上升概率最高的组合(P5)作为投资目标子集(C*)。

img

交易团队负责根据提供的投资组合执行交易,确保整个过程的端到端操作。

实验

实验设置

使用ChatGPT-4o作为基础模型,进行视觉微调。数据集收集时间为2023年6月至2024年9月,目标为市值前30的加密货币。测试集为2023年11月至2024年9月,训练集为2023年6月至2023年10月。评估多代理框架的有效性,从分类性能、投资组合表现和资产定价表现三个角度进行。

分类和资产定价性能基准包括:

  • 未微调的单一GPT-4o。
  • 微调后的单一GPT-4o。
  • 使用风险因素构建的五分位投资组合。

解释性性能评估使用五个关键指标:

  • 专业性
  • 客观性
  • 清晰性和连贯性
  • 一致性
  • 逻辑依据

投资组合表现基准包括:

  • 1/N投资组合:均等分配前30种加密货币。
  • 市场投资组合:纳斯达克加密指数。
  • BTC投资组合:100%持有比特币。

定义市场的繁荣和萧条期,使用累计回报、周回报均值、周收益标准差、夏普比率等指标量化投资组合和资产定价表现。

结果

**分类准确率。**多智能体模型在加密货币价格和市场趋势预测的分类准确性上表现最佳,优于单一的微调GPT-4o模型。多智能体框架在使用加密货币特定因素输入时表现最佳,但在使用新闻标题数据时,单一GPT-4o模型表现更好,可能是因为其更擅长从新闻中提取隐含市场因素。

img

马修斯相关系数(MCC)是更有效的评估指标,考虑了真阳性、真阴性、假阳性和假阴性的比例,显示多智能体模型在大多数任务中优于其他模型。多智能体模型的优越性能部分归因于微调过程。

img

经过微调后,LLMs的“上升”概率分布更集中,接近正态或对数正态分布,反映了加密货币收益的实际分布。微调后的多智能体模型在市场团队和加密团队中表现出较低的平均分歧,表明其更好地学习了历史数据,减少了随机猜测。多智能体模型在预测“上升”和“下降”周的平均市场收益方面表现最佳,显示出其区分市场繁荣与衰退的能力。

img

**投资组合表现。**多智能体模型的样本外累积收益优于市场指数和等权重组合,除了2024年2月。多智能体模型的累积收益持续超过100%买入持有比特币策略,除了2024年2月。在全周期、繁荣和衰退期间,多智能体模型在大多数投资组合指标上优于其他方法,并在衰退期间表现出强大的抗跌能力。

img

img

资产定价表现。多智能体框架在加密货币定价中的表现优于单一GPT-4o模型,尤其在“非常高”和“HML”投资组合上,得益于历史数据的微调学习。通过不同领域专家的合作,最终生成的投资组合表现优于单一微调模型,减少预测误差并提高准确性。多智能体模型的表现超越了三种有效风险因子,能够有效识别未来高回报的加密货币。合作生成的“非常高”和“HML”投资组合优于单个专家代理的组合,验证了团队合作机制的有效性。“HML”投资组合的回报在5%显著性水平上显著,表明模型能有效解释加密货币回报的横截面变化。

img

img

img

解释表现。LLM相比传统深度学习方法的优势在于生成自然语言解释,经过微调的专家代理能更好地运用资产定价术语,提升可解释性。经过微调的模型在大多数可解释性指标上优于未微调模型,唯独一致性指标例外。单一GPT-4o模型在微调后的一致性表现不如未微调版本,可能因历史数据引入矛盾。多智能体模型在所有指标上均优于微调后的单一GPT-4o模型,显示出多智能体框架的优势。

img

img

消融分析

img

通过消除任一代理,累积回报、平均回报和夏普比率均下降,表明每个代理在团队协作中对整体投资表现的重要性。

缺乏团队内部协作会导致不同意见无法有效整合,降低预测准确性和投资决策能力。

禁用团队间协作机制同样导致累积回报、平均回报和夏普比率下降,说明团队间协作有助于整合市场信息,提升整体投资表现。

总结

本文探索可解释的加密货币投资任务,面临历史短、信息来源多样和市场波动大等挑战。提出一种可解释的多模态多智能体框架,多个智能体团队协作进行监督学习和投资决策。实验结果表明,该模型在分类准确性和资产定价表现上优于单智能体模型。框架在投资组合表现上超越市场基准。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值