你没看错,千问3(Qwen3)的这次更新不是一个模型,而是一堆模型,Dense模型一共6款,大小从0.6B到32B不等;MoE混合专家模型有两个,30B和235B。
我上手就先用235B这个旗舰版测试了一下代码性能,用的是这个Prompt:
Write a p5.js script that simulates 25 particles in a vacuum space of a cylindrical container, bouncing within its boundaries. Use different colors for each ball and ensure they leave a trail showing their movement. Add a slow rotation of the container to give better view of what’s going on in the scene. Make sure to create proper collision detection and physic rules to ensure particles remain in the container. Add an external spherical container. Add a slow zoom in and zoom out effect to the whole scene.
目的是生成25个粒子在圆柱形的真空环境里弹跳,小球每个使用不同颜色,显示轨迹,同时还要附加一个外部的球形容器,以及缓慢的运动和视角变化,是一个很复杂的Prompt,因为它涉及到了很多方面的知识需求。
这是我用Qwen3-235B-A22B的实现效果,可以说非常好,跟在编程领域的隐形王者Claude3.5不相上下。
从Github上公布的模型性能也可见一斑,尤其是 235B-MoE,已经在数学推理和算法竞赛级别的编程任务中领先优势很明显。
现在Qwen Chat已经可以免费使用了,我建议你也可以试试看,可以用30B和235B的MoE模型和32B的Dense模型。
更多的资源也可以从这里面,比如Github,Huggingface等。
Qwen Chat: https://chat.qwen.ai/
Github: https://github.com/QwenLM/Qwen3
HuggingFace:https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
魔搭:https://modelscope.cn/collections/Qwen3-9743180bdc6b48
Kaggle: https://www.kaggle.com/models/qwen-lm/qwen-3
我这次分别尝试了本地部署和云端Qwen Chat两种方式来用千问3,本地部署主要是针对与小于等于30B的模型,对于旗舰版235B就只能用云端了。
这次的一大亮点就是混合推理模型,也就是说推理模式是可以手动开启和关闭的,千问3的所有模型都原生支持这个特性,最小的0.6B模型也不例外,部署起来非常的简单,这是用huggingface提供的transformers库部署的千问3。
这是我用的0.6B小模型做的测试,问题是:请简要的描述下大语言模型。
第一个是开启了推理的回答,可以看到enable_thinking=Ture(第一个红框),第二个红框内的内容包含了两部分内容,分别是thinking content和content,代表了推理思考内容和最终的输出内容。
你仔细看的话,即使是这个最小的模型,推理逻辑也很完整,输出的答案也非常不错。
下面这个就是手动关闭推理模式后的回答,可以看到thinking content那里是空的,答案也不差。
这种模式的好处非常大,因为对于一些非推理型的问题,比如简单的数学题1+1=?,开启推理模式后反而有可能会失败。
这个时候,只需要对于题目加一层筛选模式,然后自动的开启或者关闭推理模型,不仅可以加速输出,同时还能省不少的token,真降本增效!这个特性暂时我只在闭源的Claude-3.7上看到过,在开源模型中还是头一号!
这次大版本更新把它大模型源神的称号坐实了,毕竟一次性放8个模型可谓是空前绝后,特别是这次的更新几乎把所有的大模型要素都集齐了。
1全尺寸开源且同级别领先:从0.6B 到235B,涵盖了端侧超小模型到B端友好的模型尺寸。
0.6B的推理模型,还是可以任意切换是否开启推理的模型,包括手机在内的很多端侧模型估计迎来一大波更新。
对第一个测试,我用DeepSeek R1也试了下,671B的模型效果比起235B的千问3差点意思,不过现在才R1,提升空间也很大,毕竟是中国的开源大模型双子星。
小型MoE模型,总大小30B激活参数3B。32B的Dense模型非常的符合直觉,毕竟Qwen家族的32B模型在业内的威望有目共睹,不管是QwQ的32B模型在Marketing和Finance领域力压Google,OpenAI和Anthropic的一众大模型。
还是DeepSeek严选的蒸馏模型,千问系列的32B跟Llama的70B性能不相上下,但是模型足足小了一倍还多,可以看得出Dense模型在“智能密度”这个维度上的得分高的吓人。
而这次的30B的MoE模型更是有讲究的,可以说是目前最强的可以在消费级显卡上部署的MoE大模型,因为就拿qwq这个模型来举例,32b的模型在经过4bit量化后,显存占用20GB,而英伟达的90系显卡正好有24GB显存,一块显卡就能正好让模型跑起来,再加上性能足够,基本上可以让很多想要本地部署的个人和小型企业都满足需求。
千问3的性能可以说是全尺寸都很强,我看到@刘聪NLP测试了这么一个问题:生蚝煮熟了叫什么?
30B以上的大模型都能答得对,对他们没什么难度,我试了下本地部署的0.6B模型,照样也可以做对。
而最小尺寸的deepseek r1 1.5b蒸馏版,答案不太对。
而同样是开源的Gemma 4B,给出的回答更是让人哭笑不得。
可以说,不管是百B以上的大模型,还是可以部署在端侧的超小模型,千问3表现出来的效果都非常的好。
并且从官方介绍可以看到,千问3还同时对于Agent和MCP能力做了优化,再加上其可以本地部署的最大优势,可以说是现在大模型市场最稀缺的能力。
性能好,型号多,所以我宣布,千问3才是真正的源神!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。