从规则到智能涌现:Agent演变、架构与应用全景解析

人工智能代理正迅速改变企业运营方式,它们能够自主解决问题、优化工作流程,并具备极强的可扩展性。然而,真正的难题并不是如何构建更强大的 AI 模型。

Agent 的核心能力不仅仅是大模型的推理,而在于 数据访问、工具调用,以及跨系统的信息共享。一个孤立的 AI 代理,就像是一座信息孤岛,无法发挥真正的价值。Agent 需要一个强大的基础设施,使其输出能够被多个服务(甚至其他 Agent)无缝调用。换句话说,这不是一个 AI 模型的问题,而是 基础设施与数据互操作性 的问题。

要让 Agent 真正发挥作用,我们不能只是拼接复杂的命令链,而是需要一个由数据流驱动的基于事件的架构(EDA)。如 HubSpot CTO Dharmesh Shah 所言:“Agent 是新的应用程序。”

本文将深入探讨 AI 代理的演变、EDA 如何赋能 Agent 生态,以及如何利用这一架构突破当前 AI 应用的局限,让 AI 代理真正成为企业级生产力工具。

图片

第二次浪潮:生成式 AI——智能的跃迁,但仍存局限。深度学习推动了生成式 AI(Generative AI)的崛起,使人工智能进入了全新的发展阶段。

不同于以往专注于特定任务的预测模型,生成式 AI 依托 大规模、多样化数据 训练,具备了跨领域的泛化能力。它可以生成文本、图像、代码甚至视频,为内容创作、编程辅助和自动化交互带来了革命性的突破。

图片

然而,这一波浪潮也暴露了 生成模型的核心局限

  1. 时间冻结 —— 生成模型的知识固定在训练数据的时间点上,无法主动获取和整合最新信息。

  2. 动态适应性差 —— 由于无法实时访问外部数据或更新知识,生成式 AI 在面对个性化需求或实时变化的环境时,响应往往 过于通用,甚至错误

  3. 微调成本高昂 —— 针对特定领域进行微调(Fine-tuning)虽然可以改善表现,但 需要大量数据、计算资源和专业技术,并且容易引入偏差,成本极高。

例如,假设你希望 AI 基于用户的健康历史、所在地和财务目标 推荐最适合的保险方案。如果仅靠大语言模型(LLM),它只能基于训练时的数据生成一个 “大概率正确” 的答案,而无法访问用户的实际信息,从而导致建议要么 过于笼统,要么完全不准确

为了克服这些限制,复合人工智能系统将生成模型与其他组件(如程序逻辑、数据检索机制和验证层)集成。这种模块化设计使人工智能能够结合工具、获取相关数据,并调整输出方式,这是静态模型无法做到的。

图片

这种被称为检索增强生成(RAG)的过程,通过动态地将相关数据纳入模型的工作流程,弥合了静态 AI 和现实需求之间的差距。

虽然 RAG 有效地处理这类任务,但它依赖于固定的工作流程,这意味着每个交互和执行路径都必须预先定义。这种僵化使其难以处理更复杂或动态的任务,在这些任务中,工作流程无法被穷尽地编码。手动编码所有可能的执行路径既费时又最终受限。

据报道,尽管 Google 的 Gemini 经过更大规模数据集的训练,但仍未达到内部预期。而 OpenAI 的下一代模型 Orion 也遭遇了类似的挑战。

Salesforce 首席执行官马克·贝尼奥夫在《华尔街日报》的 “Future of Everything” 播客中表示,LLM 可能已经接近能力上限。他认为,未来的突破点并不在于更强的大模型,而是能够自主思考、适应变化并独立执行任务的智能体(Agent)

图片

与传统 LLM 依赖固定路径不同,Agent 具备动态、上下文驱动的工作流。它们可以根据实时信息调整决策流程,灵活应对复杂且不可预测的问题。这使得它们在现代企业环境下,比静态的生成式 AI 更具竞争力。

换句话说,未来的 AI 进化方向,可能不再是“更大的模型”,而是“更智能的系统”

图片

代理不是使用僵化的程序来指导每一个动作,而是使用 LLMs 来驱动决策。它们可以进行推理、使用工具和访问内存——都是动态的。这种灵活性使得代理的流程能够实时演变,使代理比基于固定逻辑构建的任何东西都要强大得多。

图片

让我们来看看一些使Agent有效的一些常见设计模式。

图片

图片

图片

多智能体系统通过将特定任务分配给专门的智能体,采用模块化方法解决问题。这种方法提供了灵活性:您可以使用较小的语言模型(SLM)为特定任务的智能体提高效率并简化内存管理。模块化设计通过保持智能体上下文专注于其特定任务,降低了单个智能体的复杂性。

相关技术是专家混合(MoE),它在单个框架内使用专门的子模型或“专家”。**与多智能体协作类似,MoE 动态地将任务路由到最相关的专家,优化计算资源并提高性能。**这两种方法都强调模块化和专业化——无论是通过多个智能体独立工作,还是通过统一模型中的特定任务路由。

就像在传统的系统设计中一样,将问题分解成模块化组件使它们更容易维护、扩展和适应。通过协作,这些专门的智能体共享信息,分担责任,并协调行动,更有效地应对复杂挑战。

图片

图片

图片

图片

Agent是能够自主思考、适应并独立执行任务的系统。与传统的基于规则或固定路径的人工智能模型不同,Agent 通过动态、上下文驱动的工作流,能够实时根据环境变化调整决策,处理复杂且不可预测的情况。

它们通过****跨系统共享信息、实时访问数据,提供灵活性和可扩展性,是应对现代企业多变需求的理想选择。

Agent 与 LLM 的对比:
  • LLM(大语言模型) 是基于历史数据生成输出,通常无法接入最新的数据或实时信息,适用于静态任务。

  • Agent 则能够访问外部数据、动态调整任务,适应不断变化的工作环境,特别适合应对复杂和多变的任务,如客户支持、流程优化和决策制定。

为何 Agent 是未来的方向:
  • 解决不可预测问题:Agent 系统能够处理动态且复杂的任务,是应对现代企业挑战的关键。

  • 提高生产力:通过自动化、智能化的工作流程,Agent 能够提高企业的效率和响应能力。

总的来说,Agent 是人工智能的未来方向,它不仅代表着更智能的系统,还为企业带来了更高效、更灵活的运营能力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值