前段时间Manus火了后,我一直在猜哪个大厂会迅速跟进发布自己的智能体应用产品,本以为是阿里,毕竟manus在和阿里合作,也想过可能是豆包。
但没想到是智谱率先推出了自家新一代智能体应用产品:AutoGLM沉思者
这一次AutoGLM最大的亮点是把自家大模型和浏览器打通了。可以说是一个简化版的computer use。
智谱的版本需要升级到1.1.3后才能体验这个功能。在安装过程中,浏览器会自动安装一个智谱清言的插件。大模型在操作浏览器时候会直接调用这个插件
官方放出来的视频效果看,大模型分解用户的需求,然后直接唤起了网页浏览器进行各种查找搜索,再把网页的搜索结果返回给大模型做下一步处理
也就是说大脑和双手都具备了,你只需要做在屏幕前盯着干活当监工就完事了。
这,不就是在对标Manus么
网上看到很多人说,AutoGLM发布后,就没Manus什么事了。
到底是不是能替代Manus,我先测了再来评价。测试录的视频都比较长,可以倍速观看。
01
实测一:收集小红书AI类视频数据
我需要获取小红书上排名前10的AI类视频,并得到点赞数量。形成表格汇总
智谱自动打开了小红书,并搜索出AI类视频,按照最热排序,打开每一个帖子后,获取到作者,发布时间,点赞数据。最终形成了下面的这个表格
结果完美符合我的需求。但总共耗时11分钟。这个效率和人手动相比,没有啥优势。甚至比人手动还慢。
02
实测二:做个贪吃蛇游戏
不管是AI编程,还是manus这样的智能体,做贪吃蛇游戏都成了一个基本测试项
同样的,要求AutoGLM做一个网页版的贪吃蛇游戏
经过多轮网页搜索后,给出了代码
但在AutoGLM中没法直接运行代码,而且整个时间耗时13分钟,因为搜索了大量的网页
还是刚才测试一的问题,太耗时了。无论是claude还是deepseek, 在输出贪吃蛇这样的游戏的时候,都是非常的快。
AutoGLM这个沉思者,确实思考太久了。而且还不能实时演示
03
实测三:制定旅行计划
我提供预算,地点,出行的时间,让AutoGLM来给我制定一个旅行计划
AutoGLM从知乎,马蜂窝等旅游网站上提取了N多信息
最后制作的一个旅行计划,还不错,比较完善。总共耗时15分钟
04
AutoGLM能取代Manus么?
对于这个问题,我的答案是: 否。AutoGLM的优化之路还很长,且重点要放在产品体验上
1 AutoGLM采用和网页联动的方式,抢占了用户对电脑的控制,也就是说在运行期间,用户是被受干扰的。假如用户也要操作网页或者做其他的事情,那么就会和AutoGLM冲突。用户体感非常的不好
反观Manus,是采用远端虚拟机的方式运行,用户下达任务后,可以去做其他的事情,完全不受干扰。当然缺点也有,极其的耗费云计算资源。
从用户的角度出发,我更喜欢manus的这种做法,因为现在的智能体应用和大模型能力还没法让人类就坐在屏幕前啥都不干。
2 AutoGLM思考过度,虽然也自动化了,但是从前面几个测试来看,时间上还不如人手动操作,再结合第一点抢占用户使用电脑,整个的效率就非常的低了。
从效率评估角度来看,AutoGLM不达标。
manus和AutoGLM都不约而同的采用了网页自动化的这种方式,这种实现好处是实现快,但坏处也是需要大模型花时间去识别网页元素,定位。
如果想要提高智能体的执行效率,当前看,MCP才是最佳的选择。
写在最后
无论是computer use或是browser use,还是多智能体应用,最基本的还是依赖大模型的能力。
对于用户使用智能体应用来说,智能不是关注的焦点,提效,省时间才是。而提效和省时间依赖的是大模型的能力。
Manus依赖的主要是claude,辅助阿里的qwen模型。所以在运行速度和智能程度上超过智谱的沉思者。
当智能体应用开始爆发的时候,大模型的淘汰就开始了,最终可能只会剩下三家左右的大模型占据整个市场。
2025年是智能体大爆发的时候,也是大模型开始残酷淘汰的时候。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。