国内外大模型安全技术框架汇总

随着人工智能技术的快速发展,大模型技术在各行业得到广泛应用,但其自身安全问题也日益凸显。本报告基于国内外研究现状,全面分析大模型安全面临的挑战与威胁,深入探讨当前主流技术框架及其应用实践,为大模型的安全防护提供参考。

一、大模型安全概述

1.1 大模型安全定义与重要性

大模型安全是指确保大型人工智能模型(如大型语言模型、视觉模型等)在开发、训练、部署和应用过程中免受各种安全威胁和攻击的能力。大模型的安全性不仅关系到模型的可靠性和准确性,更直接影响到使用这些模型的组织和用户的信任与安全。

1.2 大模型面临的主要安全挑战

大模型在开发和应用过程中面临多种安全风险,主要包括:

  1. 对抗攻击:通过在输入数据中添加微小扰动,导致模型产生错误输出
  2. 模型投毒:通过污染训练数据,植入恶意代码或偏见
  3. 越狱攻击:通过设计狡猾的指令和提示,绕过大模型的内置安全措施,使其突破设计限制
  4. 数据泄露:模型可能在输出中泄露训练数据中的敏感信息
  5. 供应链攻击:通过污染模型依赖的库和框架,植入恶意代码

二、国内大模型安全技术框架

2.1 中国信通院与阿里云的“四层安全框架”

该框架涵盖大模型自身安全与大模型赋能安全两大维度,为行业提供了覆盖全生命周期的整体解决方案,推动大模型技术合规发展。

图片

2.1.1 自身安全框架

包含安全目标(数据可信、模型可靠、平台稳定、应用可控)、安全属性(真实性、机密性、公平性等13项)、保护对象(系统、数据、用户)及安全措施(16项具体措施,如数据合规获取、模型鲁棒性增强、系统安全加固等)

在这里插入图片描述

2.1.2 赋能安全框架

聚焦网络安全(威胁识别、响应恢复)、数据安全(分类分级、违规检测)和内容安全(文本/图像/音频检测),强调大模型在安全领域的应用潜力。

在这里插入图片描述

2.2 清华大学联合中关村实验室等的“三维安全框架”

2.2.1 设计思路

围绕安全性、可靠性、可控性三大维度,提出技术实施方案,应用模式支持端、边、云三种部署形态,适配不同场景需求。

  1. *安全性*:构建防御体系,应对数据泄漏、模型篡改等风险。
  2. 可靠性:提升模型对抗鲁棒性、真实性及价值对齐能力。
  3. 可控性:通过可解释性、指令遵循等技术增强模型透明度。

在这里插入图片描述

2.3 腾讯的“全生命周期安全框架”

该框架由腾讯朱雀实验室、腾讯研究院、腾讯混元大模型、清华大学深圳国际研究生院、浙江大学区块链与数据安全全国重点实验室联合研究撰写,对大模型发展中的安全机遇与挑战、大模型安全框架和实践做法、AI伦理和价值对齐进行了系统性梳理,并展望了大模型安全与伦理未来趋势。

在这里插入图片描述

2.3.1 大模型安全风险建模

大模型在数据、算法、应用三个层面面临多重安全风险:

  1. *数据安全*:训练数据中可能包含敏感信息(如个人隐私、商业机密),存在泄露风险;数据标注偏差可能导致模型输出偏见。
  2. *算法安全*:对抗性攻击(如 Prompt 注入、越狱攻击)可能绕过安全机制,诱导模型生成有害内容;模型参数泄露可能被恶意利用。
  3. *应用安全*:在金融、医疗等关键领域,模型微小错误可能引发系统性风险;深度伪造技术滥用可能扰乱社会秩序。

2.3.2 安全框架与技术路径

报告提出 “全生命周期安全框架”,覆盖模型研发、训练、部署、运营的全流程:

  1. *研发阶段*:通过自动化攻击样本生成、红蓝对抗演习等手段,提前发现潜在风险。例如,腾讯搭建了 Prompt 安全检测平台,模拟攻击者行为,在模型上线前收敛风险。
  2. 训练阶段:采用数据脱敏、差分隐私等技术保护数据隐私;通过正则化、对抗训练提升模型鲁棒性。
  3. 部署阶段:实施最小权限原则,隔离敏感数据访问;建立实时监控与应急响应机制,防范 API 滥用。
  4. 运营阶段:结合传统网络安全技术(如 API 安全防护、存储加密),构建 AI 原生安全体系。

2.4 奇安信政务大模型安全治理框架

奇安信发布的《政务大模型安全治理框架》是国内首个针对政务大模型的安全治理框架,旨在帮助政府机构在数字化转型过程中有效应对各类安全风险。

在这里插入图片描述

2.4.1 框架核心内容

该框架强调全面的安全治理需要满足合规要求、建立完善安全机制、提供安全技术保障。其核心内容包括:

  1. *基础安全保障*:采用纵深防御、身份管理与授权等技术
  2. *数据安全*:确保数据来源合规、内容安全合规、敏感数据识别过滤、训练数据标注安全,以及数据分类分级与保护
  3. *主要安全风险识别*:识别了数据安全风险、训练语料安全风险、使用安全风险、应用安全风险、软件供应链安全风险和生成内容安全风险等七大类风险
2.4.2 应用价值

该框架能够帮助政府机构在数字化转型过程中,有效应对各类安全风险,为国家治理和公共服务提供坚实的技术支持。通过建立包容、审慎的大模型安全管理模式,推动政务大模型的安全、合规运行。

2.5 百度大模型安全框架

从大模型全生命周期视角出发,方案涵盖大模型训练/精调/推理、大模型部署、大模型业务运营等关键阶段所面临的安全风险与业务挑战,提供全套安全产品与服务, 助力企业构建平稳健康、可信可靠的大模型服务。

在这里插入图片描述

2.5.1 核心技术组件

百度的大模型安全框架主要包括:

  1. 大模型语料数据安全管理:提供整套语料数据安全管理方案,包括元数据管理、分类分级、流转审批、数据鉴权、行为审计等多项能力
  2. 大模型资产全流程保护:采用领先的Baidu AI技术,保护模型资产的安全
  3. 可信执行环境软硬一体机解决方案:通过完全硬件化的CPU+GPU保护方案,保障模型和数据安全,解决大模型在部署阶段面临的模型记忆泄露以及公有云场景下数据隐私保护问题
2.5.2 技术优势

百度安全的大模型安全框架具有多项技术优势:

  1. 构建覆盖政府网站/官媒/百科知识的信任域检索库,按官方口径准确回答涉政/热点舆情等安全范畴问题,避免大模型因幻觉引起的风险内容生成
  2. 内生安全增强,支持通过"大模型安全+小模型精调"的方式,提升模型的安全性

2.6 星云大模型安全框架(中兴通讯)

中兴通讯提出了星云大模型端到端安全防护框架,从多个层面保障大模型的安全性。

在这里插入图片描述

2.6.1 安全防护体系

该框架主要包括:

  1. 网络层面:部署防火墙、WAF、DDoS防护、漏洞扫描、主机入侵检测、主机防病毒等安全服务,实现网络隔离与访问控制
  2. 模型文件安全:采用模型文件加密、模型签名和完整性检测技术,防止攻击者在训推过程中注入有害代码、窃取或篡改模型
  3. 训练数据安全:确保训练数据的合法性和安全性,防止数据投毒攻击
2.6.2 技术创新点

星云大模型安全框架的创新点在于其端到端的安全防护理念,从网络、模型和数据等多个层面构建全方位的安全防护体系,确保大模型在训推过程中的安全性。

三、国际大模型安全技术框架

3.1 MITRE ATLAS框架

MITRE ATLAS (Adversarial Threat Landscape for Artificial-Intelligence Systems) 是一个全球可访问的、动态更新的知识库,专注于AI系统可能面临的对抗威胁。

在这里插入图片描述

3.1.1 框架结构与内容

MITRE ATLAS框架具有以下特点:

  1. 威胁分类:将AI系统的对抗性威胁划分为多个阶段,包括侦察、资源开发、初始访问、机器学习模型访问、执行、持久化、权限提升、防御规避等
  2. 技术知识库:包含机器学习(ML)系统的对抗策略、技术和案例研究,基于真实世界观察、ML红队和安全小组的演示
  3. 对抗威胁全景:提供AI系统可能面临威胁与攻击手法的全面梳理,概述了拒绝服务和模型投毒等场景
3.1.2 应用价值

MITRE ATLAS为网络安全研究人员和AI开发者提供了一个结构化的方式来理解和防御AI系统的威胁。它不仅帮助识别潜在的安全漏洞,还提供了具体的防御策略和最佳实践。

3.2 OWASP LLM TOP10

OWASP LLM Top 10 框架是由开放 Web 应用安全项目(OWASP)发布的针对大型语言模型(LLM)应用的十大安全风险指南,旨在帮助开发者、企业和安全团队系统性识别、评估和应对 LLM 应用中的关键安全威胁。

在这里插入图片描述

3.2.1 设计思路

OWASP Top 10 for LLM Applications建立在近500名专家的集体专业知识基础之上,其中包括125多名活跃贡献者。我们的贡献者来自多样的背景,包括AI公司、安全公司、独立软件供应商(ISVs)、云超级扩展商、硬件供应商和学术界。团队成员撰写了43种不同的威胁。通过多轮投票,我们将这些建议精炼为一个简洁的列表,列出了十个最严重的漏洞。专门的小组对每个漏洞进行了仔细审查,并通过公开审查对其进行了审查,确保了最终列表的全面性和可操作性。

这些漏洞中的每一个,连同示例、预防提示、攻击场景和参考资料,都由专门的小组进一步审查和精炼,并经过了公众审查,确保了最终列表的全面性和可操作性。

3.3 SafeBench评估框架

SafeBench是由北京航空航天大学、中国科学技术大学、新加坡国立大学与新加坡南洋理工大学等合作团队提出的一个多模态大型语言模型安全评估框架。

在这里插入图片描述

3.3.1 框架核心组件

SafeBench框架的核心由两个主要部分组成:

  1. 自动安全数据集生成管道:用于自动生成有害查询数据集
  2. 大模型裁判系统:用于识别和分类最具风险的场景
3.3.2 评估方法

SafeBench通过自动生成有害查询数据集和陪审团审议评估协议,评估多模态大型语言模型的安全性。在SafeBench框架下,研究团队生成了2300对多模态有害查询对,涵盖非法行为、隐私侵犯、仇恨言论等23种风险场景。

四、大模型安全技术未来展望

4.1 技术框架发展趋势

  1. 从单一防护到全生命周期安全:大模型安全框架正从单一的防护措施向覆盖数据、训练、部署、应用全生命周期的安全体系演进
  2. 从通用框架到垂直领域定制:安全框架正向政务、金融、医疗等垂直领域定制化发展,如奇安信的政务大模型安全治理框架
  3. 评估与防护并重:安全评估框架(如SafeBench)与防护框架协同发展,形成"检测-防护-评估"的闭环
  4. 安全与性能平衡:安全框架更加注重在保障安全的同时,尽量减少对模型性能的影响

4.2 安全理念发展趋势

  1. 安全与效率的平衡:未来的安全框架将更加注重在保障安全的同时,提高模型的运行效率
  2. 可解释性增强:安全框架将提供更多的可解释性功能,帮助用户理解安全决策的依据
  3. 自动化安全响应:实现自动化安全监测和响应,减少人工干预
  4. 跨模态安全防护:针对多模态大模型的安全防护技术将得到发展

4.3 政策与标准建议

  1. 建立统一的安全评估标准:制定大模型安全评估的统一标准和方法
  2. 推动安全框架开源共享:鼓励企业和研究机构开源其安全框架,促进技术交流和创新
  3. 加强国际合作:推动国际间在大模型安全领域的合作,共同应对全球性安全挑战
  4. 完善法律法规:建立健全与大模型安全相关的法律法规,明确各方责任和义务

五、结论与建议

大模型安全是人工智能发展过程中不可忽视的重要问题。这些框架从不同角度为大模型的安全防护提供了技术支持和理论指导,涵盖了威胁分析、安全评估、对抗防御、数据安全等多个方面。随着大模型技术的不断发展,安全框架也将不断演进,向着全生命周期、垂直领域定制、评估与防护并重的方向发展。

对于大模型的开发者和使用者,建议:

  1. 采用多层次的安全防护策略,结合多种安全框架和技术
  2. 定期进行安全评估和测试,及时发现和修复安全漏洞
  3. 加强安全监控和应急响应能力,确保在安全事件发生时能够快速响应
  4. 重视安全人才培养,提升团队的安全意识和技术能力

通过综合应用各种安全技术框架和最佳实践,可以有效提升大模型的安全性,为AI技术的健康发展提供安全保障。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值