对于初学者,该选择那种大模型框架:LlamaIndex 和 LangChain,需要考虑以下内容:
设置和安装
LlamaIndex
- 安装:
pip install llama-index
-
很少的依赖项使得上手变得更简单,而无需进行大量配置。
-
易于遵循的设置步骤,包括生成索引和加载数据。
# Example Code from llama_index import LlamaIndex # Create an index index = LlamaIndex() # Add data index.add_data("data/document.txt") # Query the index results = index.query("search term") print(results)
LangChain
- 安装:
pip install langchain
-
根据用例,可能需要其他依赖项(例如,与特定数据源集成)。
-
初始配置:设置简单;但是,它可能会变得更加复杂,因为需要配置不同的组件和数据源。
# Example Code from langchain import OpenAI, LangChain # Set up OpenAI API key import os os.environ['OPENAI_API_KEY'] = 'your-api-key' # Initialize LangChain with OpenAI llm = OpenAI(model_name="gpt-4", temperature=0) langchain = LangChain(llm) # Configure data sources langchain.add_data_source('data/source.csv') # Run a query response = langchain.query("What is the data about?") print(response)
文档和教程
LlamaIndex
-
文档:提供分步说明和全面、适合初学者的文档。
-
教程:包含真实示例和视频教程,帮助用户理解基本思想和功能。
-
清晰:简单的解释和井然有序的信息,使新手能够轻松理解。
LangChain
-
文档:详细的文档涵盖了从基本设置到高级功能的所有内容。
-
教程:提供全面的书面说明和视频教程,帮助用户入门和探索高级功能。
-
清晰度:组织良好,但是所涵盖的元素数量之多可能会让初学者感到害怕。
学习曲线
LlamaIndex
-
易于学习:旨在易于使用,重点是简化数据获取和查询。
-
复杂性:提供广泛的功能,这对初学者来说既是好处也是困难。
LangChain
-
易于学习:提供广泛的功能,这对初学者来说既是优势也是挑战。
-
复杂性:由于需要理解和集成各种组件,复杂性更高,这可能需要更多的时间和精力来掌握。
社区和支持
LlamaIndex
-
社区:一个不断发展的社区,拥有活跃的论坛和支持渠道。
-
资源:访问用户贡献的教程、GitHub 问题、论坛和其他社区驱动的资源。
LangChain
-
社区:完善的社区,拥有更多的成员和更多的支持选项。
-
资源:提供各种用户贡献的信息、GitHub 问题、论坛和其他社区资源。
集成与兼容性
LlamaIndex
-
集成:支持与一系列数据源和LLMs的简单集成。
-
兼容性:易于融入当前工作流程,与广泛使用的LLMs和数据存储解决方案兼容。
LangChain
-
集成:能够与大量外部系统、LLMs、数据源集成。
-
兼容性:在多种工具和平台之间具有出色的兼容性,为复杂的应用提供更大的灵活性。
用户界面和工具
LlamaIndex
-
UI 工具:提供用于使用 Chainlit 等框架开发独特功能和用户界面的工具。
-
易于使用:用户友好的工具可简化构建交互式应用程序的过程。
LangChain
-
UI 工具:提供一系列用于开发复杂工作流程和交互式应用程序的组件和工具。
-
易于使用:功能强大,但可能更难以设置和使用,特别是对于初学者而言。
总结
LlamaIndex 最适合初学者寻找简单、用户友好的框架,并提供清晰的文档和实际示例。此外,LlamaIndex 非常擅长处理数据。
如果你正在寻找一个更强大、更灵活、具有广泛定制选项的框架,你应该选择 Langchain,记住学习曲线陡峭。
通过考虑这些详细方面,你可以就哪种框架最适合你的需求和专业水平做出更明智的决定。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。