基于Transformer模型的时间序列预测研究

1.引言

在过去的几年中,自然语言处理(NLP)领域见证了许多创新技术的诞生,其中Transformer模型无疑是最具影响力的突破之一。由Google团队在2017年提出,该模型以其独特的自注意力机制强化了机器对语言的理解能力,它的出现标志着深度学习技术向前迈出了一大步。

虽然Transformer起初是为NLP设计的,但它处理序列数据的独到之处也使其成为时间序列预测的强大工具。时间序列预测通常依赖于理解过去数据中的模式,并预测未来的走势。Transformer通过其自注意力机制能够有效捕捉时间序列中的复杂关系和模式变化,从而在股市预测、气候变化建模等领域显示出优越的性能。

2.模型整体架构

图1 Transformer模型框架示意图

Transformer模型主要由两部分构成:编码器和解码器。每个编码器层包括两个核心部分:多头自注意力机制和前向传播网络。解码器也采用了类似的结构,但增加了第二个注意力机制来直接关注编码器的输出。这种设计使得Transformer能够同时处理输入数据的所有部分,极大地提高了处理速度和效率。

2.1 模型输入处理

2.1.1 Word Embedding(词嵌入)

在处理任何文本数据之前,必须将文本转换为机器可以理解的形式。词嵌入是一种将词语表示为实数向量的技术。在Transformer模型中,输入文本首先被转换成固定大小的词向量,这些向量是通过嵌入层(Embedding Layer)得到的,可以捕捉单词的语义和语法特征。

操作方式:通常,词嵌入通过预训练的模型如Word2Vec或GloVe获得,或者在训练过程中与Transformer模型一起学习。

2.1.2 Positional Encoding(位置编码)

由于Transformer模型没有递归或卷积结构来自然捕捉输入序列中的顺序信息,因此位置编码(Positional Encoding)被引入以保留序列中单词的位置信息。位置编码向每个单词的嵌入添加了一个额外的向量,这些向量有一定的模式(通常是基于正弦和余弦函数的函数),使得模型能够利用单词的相对或绝对位置。

实施细节:对于位置编码,Transformer采用了正弦和余弦函数的组合来生成每个位置的唯一编码。编码然后与相应的词嵌入相加,以形成考虑了序列信息的最终输入表示。

2.2 Encoder结构

Encoder是由Multi-Head Attention、Add & Norm、Feed Forward、Add & Norm四个小模块组成。

图2 Encoder层示意图

Encoder层的python代码如下:

class EncoderLayer(nn.Module):

def __init__(self, d_model, ffn_hidden, n_head, drop_prob) -> None:

  super(EncoderLayer, self).\_\_**init**\_\_()

  self.attention = MultiHeadAttention(d\_model, n\_head)

  self.norm1 = LayerNorm(d\_model)

  self.drop1 = nn.Dropout(drop\_prob)

  self.ffn = PositionwiseFeedForward(d\_model, ffn\_hidden, drop\_prob)

  self.norm2 = LayerNorm(d\_model)

  self.drop2 = nn.Dropout(drop\_prob)

def forward(self, x, mask=None):

   \_x = x

  x = self.attention(x, x, x, mask)

  x = self.drop1(x)

  x = self.norm1(x + \_x)

  \_x = x

  x = self.ffn(x)

  x = self.drop2(x)

  x = self.norm2(x + \_x)

  return x

2.3 Decoder结构

图3 Decoder层示意图

上图为Transformer中的Decoder结构,每个Decoder Block有两个Multi-Head Attention层,第一个Multi-Head Attention层采用了Masked操作,第二个Multi-Head Attention层的K、V矩阵输入源来自Encoder的输出编码矩阵,而Q矩阵是由经过Masked Multi-Head Attention以及Add & Norm层之后的输出计算得到。

一个decoder由Masked Multi-Head Attention,Multi-Head Attention 和 全连接神经网络FNN构成。比Encoder多了一个Masked Multi-Head Attention,其他的结构与encoder相同。

Decoder层的python代码如下:

class DecoderLayer(nn.Module):

def __init__(self, d_model, ffn_hidden, n_head, drop_prob):

  super(DecoderLayer, self).\_\_**init**\_\_()

  self.attention1 = MultiHeadAttention(d\_model, n\_head)

  self.norm1 = LayerNorm(d\_model)

  self.dropout1 = nn.Dropout(drop\_prob)

  self.cross\_attention = MultiHeadAttention(d\_model, n\_head)

  self.norm2 = LayerNorm(d\_model)

  self.dropout2 = nn.Dropout(drop\_prob)

 self.ffn = PositionwiseFeedForward(d\_model, ffn\_hidden, drop\_prob)

  self.norm3 = LayerNorm(d\_model)

  self.dropout3 = nn.Dropout(drop\_prob)

def forward(self, dec, enc, t_mask, s_mask):

  \_x = dec

  x = self.attention1(dec, dec, dec, t\_mask)  # 下三角掩码

  x = self.dropout1(x)

  x = self.norm1(x + \_x)



  if enc is not None:

  \_x = x

  x = self.cross\_attention(x, enc, enc, s\_mask)

  x = self.dropout2(x)

  x = self.norm2(x + \_x)

  \_x = x

  x = self.ffn(x)

  x = self.dropout3(x)

  x = self.norm3(x + \_x)

  return x

2.4 模型输出部分

在Transformer模型中,输出是基于输入数据和内部学习表示的序列。在NLP任务中,如机器翻译,输出通常是另一种语言的文本序列。

具体流程:

多分类设置:每个输出位置都是一个多分类任务,其类别数等于词汇表的大小。模型的每个输出步骤都预测下一个词的概率分布。通过在每个时间步应用Softmax函数,模型生成概率最高的词作为当前步的输出。

3.实例分析

在此案例中,使用Transformer模型来预测四川省的未来月度水电发电量。数据集包含从2003年1月至2024年4月共256个月的省级发电量数据。将最后12个月的数据设置为验证集,其余作为训练集。为了优化模型性能,采用贝叶斯优化技术来调整模型的超参数,并以最优超参数进行训练及预测。

本次实验中采用硬件环境配置为的NVIDIA GeForce RTX 4060 Laptop GPU,16GB内存,操作系统为Windows10,深度学习框架为pytorch,python版本为3.9.18。

表1 Transformer的超参数

图4 四川省水电发电量预测效果图

预测结果如图所示。在测试集中,预测值的平均相对误差为9.8%,有10个月预测值的相对误差低于20%,最大误差为26.4%,决定性系数为0.79,预测结果精度较高。

4.总结

Transformer模型的显著优点之一是其并行处理能力,这使得它与传统的递归神经网络(RNN)相比在训练速度上有显著提升,因此适合处理大规模数据集。此外,其自注意力机制使得模型能够有效捕捉时间序列数据中的长距离依赖关系,这对于理解和预测复杂的时间序列至关重要。然而,模型也存在一些不足,包括对超参数的依赖性强,如层数和头数的调整需要精细的优化。同时,由于自注意力机制的全局性质,模型对异常值过于敏感,可能会在有异常值的情况下导致预测精度下降。且由于Transformer模型完全基于self-attention,对于词语位置之间的信息有一定的丢失,虽然加入了positional encoding来解决这个问题,但在处理词语间位置信息上仍有待优化。Transformer模型以其并行处理能力和处理长距离依赖的能力,在多个领域显示出巨大的潜力。随着模型的不断研究和优化,预计将在时间序列预测等领域,尤其是在水文预测和能源管理等关键领域得到更广泛的应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值