用 Dify 和 Notion 打造轻量级金融数据库

今天我们来看一下如何用 Dify 和 Notion 打造一个轻量级金融数据库,首先我从服务器的MySQL数据库向Notion同步了今天的量化策略选股结果数据。

同步后的Notion表格数据如下所示:

下面我们来看一下如何将Notion表格数据同步到dify知识库。首先打开dify主页,点击创建知识库。

在创建知识库页面,选择同步自Notion内容,并绑定Notion空间,选择你要同步的Notion表格数据。

下一步进行数据处理,系统可以自动帮我们进行文本分段和清洗,索引质量我们可以选择高质量或者经济的方式,这两者的区别是高质量方法调用了系统默认的接口进行处理,需要消耗token,而经济的方法使用了离线的向量引擎,无须消耗token。

在检索设置中,我们可以选择向量检索、全文检索和混合检索,这里主要看你的数据类型和偏好。

创建好知识库之后,知识库就可以集成到应用中作为上下文引用了,可以在提示词中进行编排引用,也可以创建成可独立使用的ChatGPT索引插件。

在这里插入图片描述

这里我们可以打开刚刚创建好的知识库。在这里可以进行元数据相关的设置,比如文档类型、技术参数等。

知识库创建好之后,如果Notion有新的数据更新,我们只需要在dify的知识库界面打开设置,点击同步按钮即可一键同步Notion的数据。

下面我们来看一下如何在dify中使用知识库,首先我们创建一个空白应用,选择聊天助手和基础编排,并设置好bot的名称和描述。

写好提示词之后,在上下文选项里,我们选择并添加引用刚才创建的知识库。

在调试页面与聊天机器人对话,来测试我们的知识库。可以看到聊天助手给出的回答引用自我们刚才创建的知识库。

在这里插入图片描述

在这里插入图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Dify Notion 功能特点对比 #### 工作流自动化与集成能力 Dify 提供了强大的工作流编排功能,允许用户通过简单的拖拽操作来构建复杂的业务逻辑流程。这使得开发者可以轻松实现不同服务之间的交互数据传递[^2]。 相比之下,Notion 更侧重于信息管理协作平台的角色,在内置的工作区中提供了丰富的模板以及自定义选项,能够满足团队内部文档管理、项目跟踪等多种需求;不过其原生支持的API接口相对有限,对于复杂的应用场景可能需要借助第三方插件或Webhook等方式来进行扩展[^3]。 #### 数据处理与同步机制 当涉及到外部系统的对接时,Dify 显示出了极大的灵活性——可以直接连接到多种主流数据库服务提供商,并能实时获取最新更新的数据记录。此外,还特别优化了针对特定SaaS产品的适配器开发,像提到的支持从Notion导入不同类型的内容就是很好的例子。 而Notion本身则更强调即时编辑体验及其跨设备的一致性表现。虽然官方也在不断改进云备份策略以保障用户体验连续性安全性,但在面对海量异构源输入的情况下,可能会遇到性能瓶颈或是延迟较高的情况。 #### 用户界面友好度及易用性考量 就UI设计而言,两者都力求简洁直观以便快速上手使用。然而由于定位差异较大,具体表现在细节之处有所不同: - **Dify**:面向有一定编程背景的技术人员群体,默认采用卡片式的布局结构展示各项配置项,初次接触时或许会感觉稍显陌生; - **Notion**:凭借高度可视化且灵活多变的空间架构赢得了广泛好评,即使是非技术人员也能迅速掌握基本操作方法,非常适合用来搭建个人知识管理体系或者小型创业公司内部的知识共享中心。 ```python # Python伪代码示例说明两种工具间的主要区别之一在于它们处理任务的方式 def dify_task_handling(): """模拟Dify的任务调度过程""" workflow = create_workflow() # 创建一个新的工作流实例 add_step(workflow, "fetch_data") # 添加取数步骤 add_step(workflow, "transform_data") # 加入转换环节 execute(workflow) # 执行整个流水线 def notion_page_creation(): """模仿Notion新建页面的过程""" page = new_page("Project Plan") # 初始化一个名为'Project Plan'的新页面对象 set_property(page, title="My Project", content="# Overview\nThis is my project plan.") # 设置属性值 publish(page) # 发布至指定空间内 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值