如图,以通过数据库表动态配置的手段,完成相关物料的加载,包括;模型(gpt-4.1/deepseek)
、客户端
、对话预设
、执行规划(Planning)
、顾问(记忆、RAG、日志)
、工具(MCP
)等,在把单个 Client 串联,完成整个 Agent 调用链。这样一个 Agent 调用链可以以对话形式使用或通过 Agent 动态任务自动执行。
这套项目,小傅哥为它干了1.87万
行代码(前后端),14张
数据库表,全程动态化构建模块 Bean 对象,预热装配 Agent 服务。达到随用随配,自主组建出想要的各类的 Agent 功能服务。就以现在的丰富的 MCP 市场来可以说是,广阔天地,大有可为!在这套项目架构下,可以扩展出非常多的东西。
接下来,就给大家,细致的介绍下这套项目,以及截图演示运行效果。
🧧 文末提供了全套 AI、RAG、MCP、Agent 项目、开发教程以及工程源码。此外还有非常多的互联网大厂项目(17个),都可以一并学习。
一、项目演示
这套项目的功能非常强大,全部都以 Agent 方式进行通信。所有的 Agent 都可以动态化配置,解耦的非常强👍🏻。接下来,小傅哥给大家演示下使用效果。
1. 前端页面
-
首先,我为智能对话体(MCP)配置了联网、CSDN自动发帖、文件操作服务。
-
之后,我们可以通过预设的提示词模板,来调用对应的 MCP 服务,也可以多个 MCP 一起调用。如联网检索文章、生成解答,发布到论坛,在把文章名称记录到本地文件。这一系列操作都是可以的。
-
MCP 服务平台;
-
- https://mcpfound.cc/
- https://mcp.so/
- https://sai.baidu.com/mcp
结合知识库、MCP、提示词规划、上下文记忆,可以有非常多的场景可以玩。后续小傅哥还会继续分享可玩场景。
2. 后台页面
2.1 配置智能体(动态预热)
2.2 动态任务
- 系统会自动的把任务加载到系统内执行,完成智能体的调用。
- 有了这个操作,你配置好的智能体,他就可以连续24小时的工作了。除了自动发文章,你可以配置出各种东西。比如特朗普推特、黄金、股票价格,每天早上出一个文件,邮件方式推送给自己。兼职美滋滋。
2.3 MCP管理
- 市面上有非常的多的 MCP 服务,我们可以选择的这些服务来组装出我们的智能体。
- 系统支持配置 stdio、sse,两种方式。无论是自己开发的 MCP 还是市面的都可以使用。(课程中有教大家,基于 Spring AI 怎么开发 MCP 服务)
二、系统设计
1. 功能流程
- 如图,从上往下,以任务或会话方式,调用 agent 为目标,串联各个 client。形成内部处理 a2a 流程。
- 之后,对于 client 则由系统都动态的方式创建 bean 对象。运营在 ai agent 后台配置相关数据即可。
2. 库表设计
如图,为整个系统对应的数据库表信息;
- ai_agent_task_schedule,智能体任务调度配置表
- ai_agent,AI智能体配置表
- ai_agent_client,智能体-客户端关联表
- ai_client,AI客户端配置表
- 模型配置组;ai_client_model、ai_client_model_config、ai_client_model_tool_config
- 工具配置组;ai_client_tool_config、ai_client_tool_mcp
- 顾问配置组;ai_client_advisor、ai_client_advisor_config
- 提示词配置;ai_client_system_prompt、ai_client_system_prompt_config
- 知识库配置;ai_rag_order
3. 系统工程
- 如图,为整个系统的工程结构,分为 api、app、domain、infrastructure、trigger、types,六边形架构。(现在各个互联网都在落地 DDD,因为 DDD 比最早出来的几年,已经有了非常明确的规范)相关资料;https://bugstack.cn/md/road-map/ddd-guide-01.html
- Domain 核心领域层,处理 Agent 的预热、对话、知识库、任务的操作。后续 Agent 相关都维护到这个领域包下。
- Trigger 触发器层,负责对外提供接口,让外部来调用。当有一些纯 crud 操作的流程时,这个架构下,会在 trigger 层直接调用基础设施层提供数据,而不需要在经过 domain 领域层,重复封装对象。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。