Mini-Omni 2模型发布,支持多模态交流!
还在为AI助手不能理解你的语音而烦恼吗?
Mini-Omni 2来了,它不仅能听懂你说话,还能实时用语音回答你!这个全能型AI助手简直就是科幻电影里走出来的!
全能型AI助手是什么样的?
Mini-Omni 2 是一个全方位交互的模型,能够:
-
理解图像、音频和文本输入
-
与用户进行端到端的语音对话
-
实时生成语音回应
-
支持说话过程中的打断
这意味着什么?
简单来说,你可以像跟人类聊天一样和Mini-Omni 2交谈,给它看图片,它都能理解并用语音回答你。最厉害的是,它还支持实时打断,就像真人对话一样自然流畅!
技术大揭秘
那么,Mini-Omni 2是如何实现这些神奇功能的呢?
-
多模态建模:它将图像、音频和文本特征串联在一起作为输入,实现全面的任务处理。
-
实时语音输出:使用文本引导的延迟并行输出技术,生成实时语音回应。
-
多阶段训练:通过编码器适应、模态对齐和多模态微调三个阶段,实现高效的对齐训练。
最让人兴奋的是,Mini-Omni 2采用了MIT许可证,这意味着它是开源的!开发者们可以自由使用、修改和分发这个强大的模型。
快速上手指南
想要体验Mini-Omni 2的魔力吗?只需几个简单步骤:
-
创建新的conda环境并安装所需包
-
克隆项目仓库
-
启动服务器
-
运行Streamlit演示
注意:你需要在本地运行Streamlit,并确保安装了PyAudio。
如果你只想快速测试,可以直接运行预设的音频样本和问题:
python inference_vision.py
然后,你就能像电影《她》中那样,与AI助手进行自然、流畅的对话。无论是在工作中寻求帮助,还是在日常生活中寻找陪伴,Mini-Omni 2都可能成为你的得力助手。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。