单变量与多变量时间序列预测
单变量时间序列预测是指仅使用单一时间序列变量的数据来进行未来趋势的预测。例如,可以利用过去的股票价格预测未来价格,或根据历史气温预测未来的气温。在单变量时间序列预测中,主要挑战包括:数据的非平稳性、季节性与周期性成分的干扰、长程依赖关系的捕捉,以及异常值和噪声的存在。非平稳性会使得模型难以准确捕捉数据的趋势和模式,而季节性与周期性成分可能对预测结果造成干扰。传统模型在面对长程依赖关系时表现较为乏力,尤其当数据量有限时更是如此。此外,异常值和噪声的存在也会影响模型的训练效果和预测精度。
多变量时间序列预测指利用多个相关的时间序列变量来进行未来趋势的预测。例如,使用股票价格、交易量和市场指数等多种数据来预测股票价格,或使用气温、湿度和风速等多种气象数据来预测未来的气温。多变量时间序列预测面临的主要困难包括变量之间的相互依赖关系、高维数据处理、数据同步问题和特征选择。多变量时间序列数据中的各变量之间可能存在复杂的相互依赖关系,如何有效建模这些关系是一个关键问题。高维数据增加了模型的复杂度和计算负担,可能导致模型过拟合或计算资源不足。各变量可能具有不同的采样频率或时间戳,如何进行数据同步和对齐是一个挑战。在多变量时间序列预测中,选择合适的特征至关重要,过多的无关或冗余特征会增加模型的复杂度,而缺少关键特征则会降低预测效果。
短期与长期时间序列预测
短期时间序列预测是指对未来较短时间范围内的数据进行预测,例如预测未来几小时的电力负荷或未来几天的股票价格。短期预测通常依赖于近期数据,因此能够较好地捕捉到数据中的短期模式和趋势。然而,短期预测也面临一些挑战。首先,数据中的噪声和随机波动可能会对预测结果产生较大影响,因为模型容易对这些短期波动产生过拟合。其次,短期预测需要处理高频数据,这对数据采集和处理提出了更高的要求。此外,短期预测模型需要具备快速响应能力和高实时性,这对计算资源和算法效率也构成了挑战。
长期时间序列预测是指对未来较长时间范围内的数据进行预测。例如,预测未来几个月的气温变化或未来几年的经济增长趋势。长期预测需要捕捉时间序列中的长期模式和趋势,因此通常需要更复杂的模型和更多的历史数据。长期时间序列预测面临的主要困难包括数据的非平稳性、长期依赖关系的捕捉以及外部因素的影响。长期预测中,数据的非平稳性会导致模型难以准确捕捉长期趋势和变化。长期依赖关系难以被传统模型捕捉,尤其是在数据量较少的情况下。此外,长期预测容易受到外部因素(如政策变化、市场环境变化等)的影响,这些因素难以在模型中准确量化和预测。
平稳与非平稳时间序列预测
平稳时间序列预测是指对平稳时间序列数据进行预测。平稳时间序列的均值和方差在时间上保持恒定,且自相关结构不随时间变化。由于平稳时间序列的统计特性相对稳定,预测模型可以更容易地捕捉其规律性和周期性。例如,某些季节性调整后的经济指标或经过差分处理后的股票价格序列。平稳时间序列预测的主要挑战在于如何准确建模其自相关结构和周期性成分。尽管平稳时间序列的特性较为稳定,但在实际应用中,实际数据仍可能受到随机波动和噪声的影响。此外,模型选择和参数估计的准确性也对预测效果有重要影响。
非平稳时间序列预测是指对非平稳时间序列数据进行预测。非平稳时间序列的均值和方差随时间变化,其自相关结构也可能随时间变化。非平稳时间序列广泛存在于许多实际应用中,如股票价格、气温变化等。非平稳时间序列预测面临的主要困难在于数据的非平稳性和复杂的依赖结构。首先,非平稳时间序列的数据特性随时间变化,使得传统的平稳模型难以适用。其次,非平稳时间序列可能包含趋势、季节性和周期性成分,这些成分需要通过适当的方法进行分解和处理。此外,非平稳时间序列中的突发事件和异常值也会对预测模型产生较大影响。
一些例子:
基于深度学习的交通堵塞预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于深度学习的交通堵塞预测(Python)
基于机器学习的径流预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于机器学习的径流预测(Python)
基于XGboost的能耗时间序列预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于XGboost的能耗时间序列预测(Python)
基于指数平滑的海面温度预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于指数平滑的海面温度预测(Python)
简单的基于双向LSTM模型的时间序列预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:简单的基于双向LSTM模型的时间序列预测(Python)
简单的基于LSTM的股市分析与预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:简单的基于LSTM的股市分析与预测(Python)
简单的基于机器学习的风速预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:简单的基于机器学习的风速预测(Python)
基于递归神经网络的温度时间序列预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于递归神经网络的温度时间序列预测(Python)
风力发电时间序列预测方法(Part1,Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:风力发电时间序列预测方法(Part1,Python)
风力发电时间序列预测方法(Part2,Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:风力发电时间序列预测方法(Part2,Python)
基于RNN的股票市场时间序列预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于RNN的股票市场时间序列预测(Python)
基于LSTM的相对湿度预测(Part1,Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于LSTM的相对湿度预测(Part1,Python)
基于LSTM的相对湿度预测(Part2,Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于LSTM的相对湿度预测(Part2,Python)
锂离子电池健康状态预测(Part1,Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:锂离子电池健康状态预测(Part1,Python)
简单的基于LSTM的黄金价格预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:简单的基于LSTM的黄金价格预测(Python)
基于简单时间序列分析的股票价格预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于简单时间序列分析的股票价格预测(Python)
简单的基于CNN-LSTM的时间序列预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:简单的基于CNN-LSTM的时间序列预测(Python)
简单的基于机器学习的空气温度时间序列预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:简单的基于机器学习的空气温度时间序列预测(Python)
简单的基于深度学习和滑动窗口的时间序列预测方法(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:简单的基于深度学习和滑动窗口的时间序列预测方法(Python)
简单的基于Prophet模型的电力需求时间序列预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:简单的基于Prophet模型的电力需求时间序列预测(Python)
采用平稳性方法(AR, MA, ARMA和ARIMA)预测随机股票(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:采用平稳性方法(AR, MA, ARMA和ARIMA)预测随机股票(Python)
基于Transformer的外汇股票市场价格预测(Part1,Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于Transformer的外汇股票市场价格预测(Part1,Python)
基于非交叉分位数LSTM的锂离子电池剩余使用寿命预测(Python) - 哥廷根数学学派的文章 - 知乎
哥廷根数学学派:基于非交叉分位数LSTM的锂离子电池剩余使用寿命预测(Python)
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。
基于Savitzky-Golay滤波和Transformer优化网络的multi-step水质预测模型(Python)
为了充分考虑水质数据的时序性、差异性、混沌性等复杂特性,提高水质预测的准确度,提出一种基于Savitzky-Golay滤波和Transformer网络的multi-step水质预测模型,程序运行环境为Python,采用Spyder IDE,所用模块如下:
from math import sqrt
from sklearn.metrics import mean\_squared\_error,mean\_absolute\_error,r2\_score
from prepare\_data\_External\_input import get\_dataloader
from Network import \*
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import numpy as np
from uti import plot\_curve
import scipy.signal as sg
基于Transformer和时间嵌入的外汇股价预测(Python,ipynb文件)
Python环境下基于VMD-Attention-LSTM模型收盘价预测深度学习模型
Python环境下基于EMD与深度学习的时间序列预测方法
采用EMD序列的方法将时间序列进行分解,然后基于样本熵理论对IMF分量进行测量
对高频序列用LSTM预测,对低频序列用RNN预测
神经网络在预测集上采用滚动预测的方法进行,不引入未来函数
所用模块如下:
from PyEMD import EMD
import pandas as pd
import numpy as np
import torch
import torch.nn
from sample\_entropy import SE, FSE
import matplotlib.pyplot as plt
plt.rcParams\['font.sans-serif'\] = 'Microsoft Yahei'
plt.rcParams\['axes.unicode\_minus'\] = False
from plot\_function import line\_plot
from model\_train import \*
from model\_evaluation import \*
from data\_preprocessing import \*
Python环境下基于机器学习的NASA涡轮风扇发动机剩余使用寿命RUL预测
C-MAPSS数据集是美国NASA发布的涡轮风扇发动机数据集,其中包含不同工作条件和故障模式下涡轮风扇发动机多源性能的退化数据,共有4个子数据集,每个子集又可分为训练集、测试集和RUL标签。其中,训练集包含航空发动机从开始运行到发生故障的所有状态参数;测试集包含一定数量发动机从开始运行到发生故障前某一时间点的全部状态参数;RUL标签记录测试集中发动机的RUL值,可用于评估模型的RUL预测能力。
程序为Python编写,运行环境为Spyder IDE,采用8种机器学习方法对NASA涡轮风扇发动机进行剩余使用寿命RUL预测,8种方法分别为:Linear Regression,SVM regression,Decision Tree regression,KNN model,Random Forest,Gradient Boosting Regressor,Voting Regressor,ANN Model。
所用模块如下:
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model\_selection import train\_test\_split
from sklearn.linear\_model import LinearRegression
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean\_squared\_error, r2\_score
import tensorflow as tf
from tensorflow.keras.layers import Dense
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。