AI医疗护理场景应用架构图:
这张架构图展示了 AI 大模型在医疗场景中的应用架构,采用分层设计,涵盖运行环境、数据存储、数据处理、业务逻辑及展示层,辅以权限控制与日志记录,具体如下:
运行环境
-
移动端:支持移动端访问,提供便捷的医疗服务入口。
-
云服务器:提供计算与存储资源,保障系统稳定运行。
数据存储层
-
患者档案库:存储患者基本信息、病史等档案。
-
知识图谱数据库:构建医疗知识关联网络,支持智能查询与分析。
-
隐私与安全保障模块:确保医疗数据的安全性与隐私性。
-
医疗数据库:存储临床诊疗、健康数据等专业医疗信息。
数据处理层
-
临床大型语言模型(SoftTiger CLam):处理医疗文本,支持智能问诊与诊断辅助。
-
检索增强生成技术(RAG):结合知识库检索与模型生成,提升回答准确性。
-
长上下文窗口处理:支持复杂医疗场景下的长文本交互与分析。
-
数据清洗与预处理:规范原始数据,提升数据质量以适配模型。
业务层
-
登录模块:包含用户登录界面、身份验证、权限控制及登录记录。
-
医生模块:支持医生信息展示、预问诊查看、诊断录入等功能。
-
患者管理模块:实现档案查看 / 编辑、搜索、预约挂号管理。
-
智能问诊模块:收集问诊信息、预测病因、生成诊断记录。
-
用户模块:管理个人信息、在线预约、预问诊及健康数据。
-
健康数据模块:展示健康记录、生成趋势图与健康报告,支持数据同步备份。
-
问答模块:提供智能问答、问题列表展示、模板匹配及用户反馈整合。
-
知识图谱模块:展示图谱、提供查询接口,支持数据关联分析与更新。
-
系统通知与用户反馈模块:包含消息中心、公告发布、常见问题解答及反馈处理。
展示层
-
患者端与医生端:分别为患者和医生提供专属操作界面。
-
互动模块:支持医患间的信息交互。
辅助模块
-
权限控制:确保不同角色(如患者、医生)仅能访问授权内容。
-
日志记录:追踪系统操作,便于审计与问题排查。
该架构通过分层协作,整合 AI 技术与医疗业务,实现智能问诊、数据管理、医患互动等功能,提升医疗服务的效率与智能化水平。
医疗健康信息系统功能结构图:
基于Web的医疗健康信息系统功能结构图描述了医疗健康信息系统的各项功能和模块之间的关系。这种结构图通常采用层次结构或模块化的方式展示系统的功能组成和层次结构。包含导航模块、用户模块、病历模块、预约就诊模块、患者管理模块、病历管理模块、处方管理模块和信息保密模块八个模块。功能结构图为系统的架构设计提供了参考,帮助团队和利益相关者理解系统的功能和特点,对系统需求进行分析和确定。
医疗服务系统运作流程图:
医疗系统流程是指医疗机构或医疗服务提供者为患者提供医疗服务时所遵循的一系列规定和程序。这些流程旨在确保医疗服务的质量、安全、高效性和连续性。规范的医疗系统流程有助于提高医疗服务的质量和安全,减少医疗错误和失误。 医疗系统流程有助于优化医疗资源的利用,提高医疗服务的效率。医疗系统流程有助于确保患者的安全,在医疗过程中减少意外事件的发生。规范的医疗系统流程有助于提升医务人员的工作效率,减少冗余步骤和时间浪费。医疗系统流程有助于促进医疗团队的合作,加强沟通和协作。 优化的医疗系统流程有助于改善患者的就诊体验,提高患者满意度。综上所述,医疗系统流程是为了保障医疗服务质量、患者安全和医务人员效率而制定的一系列规定和程序。通过遵循医疗系统流程,医疗机构可以提供更加高效、安全和优质的医疗服务,同时促进医疗团队的协作和患者的满意度。
医疗基础流程图:
医疗基本流程图用于展示医疗过程中的基本步骤和流程。这种流程图通常覆盖了患者就诊、诊断、治疗、药物配送、医疗记录等多个环节,以便医疗团队、患者和其他利益相关方更好地了解和理解医疗服务的整体流程。是一种图形化的表示方式,用于展示医疗过程中的各个步骤和环节之间的关系和顺序。通过医疗基本流程,有助于医疗机构分析和优化流程,提高工作效率。作为医疗质量控制的工具,流程图有助于标准化操作,提高医疗服务的质量。
医患沟通医疗培训课件:
"医患沟通医疗培训课件"是专门用于培训医务人员在医患沟通方面的课件。这些课件旨在帮助医生、护士和其他医疗从业人员提高与患者之间的沟通技能,加强患者和医务人员之间的信任关系,以提升医疗服务的质量和患者满意度。医患沟通的目标是通报情况 了解病情,耐心细致的询问病史与查体。医患如何进行有效沟通呢? 通过培训医务人员的沟通技能,可以增强医患关系,提高患者对医疗服务的满意度。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。