一、中国智能客服市场发展
在中国,智能客服已经不再是一个新鲜的话题,而是逐步成为企业服务体系中不可或缺的一部分。
按功能划分,智能客服可分为在线客服、语音客服、辅助机器人、智能质检及数字人等五大类别。
从2000年开始,中国的智能客服产业经历了关键词匹配阶段、多渠道交互阶段,再到如今的大模型驱动阶段。这背后是技术迭代的推动——从早期基于规则的机械式应答,到AI技术融合下的灵活多轮对话,再到生成式AI赋能的拟人化服务,整个行业正发生深刻变革。
尤其是2023年以后,大模型技术如ChatGPT的普及,使得智能客服在知识库构建效率、运维成本降低以及多模态交互能力上取得显著进展。
并且,我查阅相关资料显示:
根据华经情报网和中研普华的分析,2022年中国智能客服市场规模已达到66.8亿元,预计2027年将跃升至181.3亿元,年均复合增长率高达52.66%。
在竞争格局中,头部企业如腾讯云、网易七鱼等已形成技术与品牌壁垒。此外,市场的核心竞争力逐渐转向多方位、个性化的客户交互模式,特别是在AI大模型的助力下,智能客服正从单一场景向多场景协同迈进。
并且经过综合分析,我们可以知道:中国智能客服市场未来将呈现“双轨并行”的发展路径:一方面是专业化厂商通过持续创新巩固优势;另一方面,大模型技术推动综合性解决方案快速扩张。在这场竞争中,产品能力始终是核心——谁能更好地解决用户痛点、更快地响应市场需求,谁就能占据先机。
二、AI+技术融合
(1)基于大模型的智能客服
随着大模型技术的引入,智能客服系统的功能得到了显著增强,同时其构建和维护的成本也实现了大幅度的降低。尽管传统的智能客服行业正在迅速发展,并且得益于自然语言处理(NLP)、机器学习(ML)、知识图谱、自动语音识别和文字转语音等技术的进步,这些产品在语义识别的精确度、多轮对话的处理能力以及自我学习的能力上都有了显著提升,但是,那些依赖于非生成式人工智能技术的传统智能客服产品仍然面临着一些挑战。
这些挑战包括高额的知识库维护成本、缺乏对用户情绪的识别能力以及推理能力的不足。
(2)AI技术融合为智能客服
基于大模型的智能客服产品架构,主要分为两个部分:
- 智能客服产品应用:
-
知识库构建与维护:自动化知识管理和更新。
-
智能语音机器人:提升机器人的理解和服务能力。
-
工单预填&服务摘要:自动生成工单和摘要,提高效率。
-
客服辅助与培训:自动生成回复和培训材料。
-
数字人客服:使用数字形象与客户互动。
-
多模态交互:通过图文、视频等多种形式与用户互动。
- 大模型应用:
-
语言大模型:处理和理解自然语言。
-
视觉大模型:处理视觉信息。
-
多模态大模型:整合语言和视觉信息,实现更丰富的交互。
大模型技术在智能客服领域的应用带来了显著的效率提升和体验改善。通过大模型自动抽取和生成知识文档,知识库的配置和维护工作量大幅减少,降低了80%以上的工时投入。
同时,大模型的应用也减少了智能客服产品在多轮对话配置上的人工投入,将原本需要40人天的工作量缩短至10天以内。
大模型还提高了智能客服的推荐和回答准确率,从80%提升至90%以上,并使智能客服具备了情绪识别和拟人化回答的能力,从而提高了坐席效率和用户满意度。
三、应用场景
智能客服在电商和零售这些行业里,有着非常大的作用。它不仅能让你在各种渠道上更好地服务顾客,还能帮你做决策,让客服工作做得更漂亮。
这样的模式,客服人员的工作会变得更轻松,效率也会提高,企业的成本也能降下来。同时,它还能让顾客的体验变得更好。
对于那些顾客太多顾不过来、老顾客回头率低、顾客体验差的问题,智能客服都能帮忙解决。总的来说,智能客服就是企业省钱提效的好帮手,还能让顾客对品牌更有好感,满意度自然也就上去了。
四、我的智能客服
这是一个比较典型的智能客服逻辑框架,小伙伴可以发现其实很简单,基本可以说是RAG技术的使用。
把官方文档,手册等资料进行结构化,最好是形成问答对。
然后把形成的结构化知识进行向量化,嵌入到向量库。
当用户进行询问时候,那么把问题进行向量化,对向量库进行搜索。
最后把搜索到的知识向量作为大模型的背景知识进行整合,返回给用户。
之前学习的智能客服,主要用于与微信机器人进行绑定。网站客服可以把消息传到个人微信,也可以针对知识库进行问答。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。