去年有分享过各种免疫浸润的计算原理和R语言实现。最近在看TCGA数据库的免疫指标和分型时,发现官网已经给出了免疫浸润、新抗原、突变负荷、CNV负荷等整理好的数据,还包括2018年发表的六种免疫分型数据。可以直接下载使用。
链接:https://gdc.cancer.gov/about-data/publications/panimmune
癌症免疫Landscape
Immune Landscape of Cancer 是基于 TCGA 数据的全面肿瘤免疫微环境分析项目,为研究肿瘤免疫微环境和免疫反应提供了重要参考。
免疫相关内容
1. 肿瘤免疫浸润特征
-
描述肿瘤中免疫细胞(如 T 细胞、B 细胞、NK 细胞、巨噬细胞等)的浸润模式。
-
通过基因表达数据估算免疫细胞丰度(如使用 TIMER 和 CIBERSORT 等方法)。
2. 肿瘤免疫亚型的分类
将所有肿瘤样本划分为六种免疫亚型,每种亚型对应不同的免疫特征和生物学行为:
-
C1 (Wound Healing)
:高表达促炎因子(如 IL-6)。显著的血管生成和巨噬细胞浸润。 -
C2 (IFN-γ Dominant)
:高水平的 T 细胞浸润。强烈的 IFN-γ 信号。 -
C3 (Inflammatory)
:高 B 细胞浸润。预后最好。 -
C4 (Lymphocyte Depleted)
:单核细胞和中性粒细胞主导。高 TGF-β 信号,预后较差。 -
C5 (Immunologically Quiet)
:免疫浸润最少,基因组稳定性高。 -
C6 (TGF-β Dominant)
:TGF-β 相关信号增强。基质成分丰富,预后最差。
3. 肿瘤突变负荷(TMB)与免疫反应
-
研究不同癌症类型的突变负荷水平与免疫浸润的关系。
-
TMB 高的肿瘤通常伴随更多的新抗原,可能更容易诱导免疫反应。
-
关联 TMB 与免疫治疗的潜在疗效。
其它数据
除了免疫相关的数据之外,还提供了甲基化、拷贝数等数据,有需要的可以直接下载使用,就不用自己在慢慢算了。
关于TCGA各种免疫浸润数据的分析,之前有也工具计算过,比如TIMER2。
不过这个网站好像很久没怎么维护了,不知道现在还能不能下载它提供的数据,我还是两年前下载的,如果大家有需要,我后面可以分享一下。
immu_data <- fread("./infiltration_estimation_for_tcga.csv",data.table = F)
11070行是包含TCGA所有的样本,120列是包括了TIMER、CIBERSORT、CIBERSORT-ABS、QUANTISEQ、MCPCOUNTER、XCELL、EPIC这些计算免疫浸润方法的结果。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。