智谱发布新模型,“实时多模态”惊艳所有人

2025年开春,智谱GLM系列模型上新升级了,这次发布可以总结为一句话:模型能力越来越强,对开发者越来越普惠。本次发布当中,尤其让我眼前一亮的是端到端多模态模型GLM-Realtime,简单上手测试之后,我觉得大模型已经进入到了next level。

01

行业首个端到端多模态模型,初体验

根据智谱官方的介绍,GLM-Realtime是一个端到端多模态大模型,具有近乎实时的视频理解端到端的语音交互能力,创新性地提供了清唱功能,并且支持长达2分钟的记忆以及Function Call功能

视频理解能力就好比AI有了眼睛,输入的信息更丰富了;端到端的语音交互,可以随时打断,交互方式更接近人类,清唱更是独树一帜的能力;记忆让AI能够处理更多时间跨度的信息;Function Call功能,通过调用外部知识库,拓展了AI的知识边界。

GLM-Realtime API 已经在智谱AI开放平台上线,现阶段可以免费调用,对于广大个人开发者来说,简直就是送福利。网址如下:

https://bigmodel.cn?utm_source=0103&utm_campaign=2025q1&_channel_track_key=FLc6U2DC

下面我们选择几个场景,做些小应用,更深入地探索GLM-Realtime的能力。

02

不会唱歌的AI,不是好Chatbot

先来试试GLM-Realtime的语音对话能力。在智谱AI开放平台上注册好账号后,进入控制台,创建一个API key,就可以对接口进行调用了。以下是我的客户端鉴权代码:

服务端的鉴权代码:

接下来实现接口调用,通过WebSocket连接建立与接口之间的双向通信。

设计一个简单的语音对话界面,能够启动和停止语音对话。除了对话,现在GLM-Realtimeg已经会唱歌了

语音对话界面的实现代码,如下:

程序打包发布,现在就来看看实际运行效果吧。

不得不说,AI唱得真好,比我强太多了。

03

AI帮你看见更大的世界

接下来,试试GLM-Realtime的视频理解能力,客户端和服务端鉴权代码跟前面一样,就不展示了。还需要设计一个简单的视频交互界面:

(效果来自智谱清言,已支持视频通话)

以android端App应用为例,代码实现如下:

服务端传入视频、音频内容,返回音频,代码实现如下:

将以上代码运行起来,看下服务端运行时日志:

再看看客户端运行时日志:

完成代码调试后,就可以打包发布了,一起来看看效果。

(效果来自智谱清言,已支持视频通话)

04

当AI有了记忆

当GLM-Realtime强大的视频理解能力,搭载到智能眼镜上,又会激发出怎样的创新和创意呢?智谱携手INMO影目,进行了有趣的探索。戴上智能眼镜,轻轻一按开启对话模式,这时GLM-Realtime跟你看到的画面是一样的,来看看实测的效果。

你也被智能眼镜惊艳到了吧?接下来,还有更加震撼的,在GLM-Realtime长期记忆能力的加持下,你能够对2分钟内看到的画面进行提问。春节快到了,我让AI帮我写对联,对AI来说小菜一碟。体验下来,交互方式非常有趣,就好像跟一位学识渊博的朋友在吟诗作对。

从AI发展趋势来看,未来将实现记忆分层管理,包括短、中、长期记忆,记忆系统从 “单一存储” 向 “分布式认知架构” 演变,记忆管理重点转向“智能筛选与整合”,并在 “记忆” 与 “遗忘”间找到合理的平衡,AI越来越贴近人类的思维特性。

05

AI硬件,即将井喷

在情感陪伴类场景,GLM-Realtime的视频理解与语音交互能力,将有广阔的发展空间。我突然灵光一闪,让智能眼镜跟智能机器人来一场角色扮演游戏,你猜AI能够辨认出对手也是AI吗?

AI与物理世界的融合,将产生具身智能,这也是被行业看好的发展方向,具身智能能够更好地理解和操控现实世界。

具身智能不仅是技术的提升,更是人机交互方式的革新。AI将不再局限于屏幕前的静态交互,而是能够通过机器人或其他智能设备与人类进行更加自然、深入地互动。具身智能的发展,将为教育、医疗、服务等行业带来新的发展机遇。

06

大模型已经进入next level

智谱GLM系列模型的这次升级,带给我很多惊喜,尤其是GLM-Realtime端到端多模态的能力,将AI的应用边界再次拓宽,从语音对话到视频理解,从实时交互到长期记忆,每一个能力都为开发者和用户带来了前所未有的体验。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值