背景:最近一些同学加我,第一句:我要学习量化交易赚钱。 推荐量化软件给我,我要赚钱。 每次我都耐心地解释,量化软件只是工具,赚钱靠的是策略。 就有一些同学问,既然不一定赚钱,学习量化有什么用?
以下是正文:
随着金融市场的不断发展,量化交易逐渐成为投资者关注的焦点。许多初学者在接触量化交易时,第一反应往往是想要通过量化软件快速获利。然而,量化交易不仅仅是使用软件工具,更重要的是背后的策略和思维方式。
一、量化思维的本质
量化思维是一种将复杂现象转化为可量化指标的思维方式。它要求我们在面对问题时,能够通过数据和模型来分析和解决问题。在程序员行业,量化思维已经深入到团队管理和项目评估的各个方面。
例如,在技术管理中,团队需要通过量化指标来评估代码质量和项目进度。使用SonarQube等工具进行代码扫描,确保代码重复率低于5%,单元测试覆盖率达到85%以上。这些量化指标不仅让团队成员清楚自己的工作目标,也为项目的顺利进行提供了保障。
同样,在故障管理中,量化指标显得尤为重要。对于线上故障,P0级故障的响应时间必须控制在15分钟内,每月BUG数量与代码提交量的比值要低于0.3%。通过这些量化标准,团队能够有效地降低故障率,提高系统的稳定性。
二、量化交易的必要性
在股票市场,量化交易的出现为传统的投资方式带来了变革。传统的“盘感”投资逐渐被数学模型和数据分析所取代。量化交易不仅仅是使用软件来执行交易,更重要的是通过数据分析和模型构建来制定投资策略。
数据驱动的决策
量化交易的核心在于数据。通过对历史数据的分析,投资者可以识别出潜在的市场趋势和投资机会。例如,利用量化指标构建市场情绪仪表盘,当大盘情绪不佳时,系统可以自动调整仓位,降低风险。这种数据驱动的决策方式能够帮助投资者在复杂的市场环境中做出更为理性的选择。
风险管理
量化交易还强调风险管理。通过量化模型,投资者可以对风险进行评估和控制。例如,使用VaR(在险价值)模型来评估投资组合的潜在损失,从而设定合理的止损策略。量化交易能够帮助投资者在市场波动中保持冷静,避免因情绪波动而做出错误决策。
策略优化
在量化交易中,投资者可以通过回测和优化策略来提高投资收益。通过对历史数据进行回测,投资者可以评估策略的有效性,并根据市场变化进行调整。这种策略优化的过程使得投资者能够不断提升自己的投资水平。
三、量化思维的广泛应用
量化思维不仅限于金融市场,它在各个领域都有广泛的应用。无论是技术管理、市场营销还是生产管理,量化思维都能为决策提供有力支持。
技术管理中的量化
在技术管理中,量化指标帮助团队评估项目进度和代码质量。通过量化管理,团队能够及时发现问题,并采取措施进行调整。这种管理方式提高了团队的工作效率,确保项目按时交付。
市场营销中的量化
在市场营销领域,量化思维同样重要。通过数据分析,营销人员可以评估广告效果、客户反馈和市场趋势,从而制定更为精准的营销策略。例如,利用A/B测试来评估不同广告的效果,帮助企业优化广告投放。
生产管理中的量化
在生产管理中,量化指标用于评估生产效率和产品质量。通过对生产数据的分析,企业能够识别瓶颈环节,降低生产成本,提高产品质量。量化管理使得企业能够在激烈的市场竞争中保持优势。
四、结论
学习量化交易不仅仅是为了快速赚钱,更是为了培养一种数据驱动的思维方式。通过量化思维,投资者能够在复杂的市场环境中做出更为理性的决策,提高投资收益。同时,量化思维在各个领域的广泛应用也证明了它的重要性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。