人的专注力只有10分钟,今天内容非常简单:
① 推理环境与准备
② 全尺寸下载DeepSeek1.5B/7B/8B/14B/32B/72B等
③ 本地跑起来,兼容openai api格式推理
④ 将模型接入RAG-langchain中
第一部分:推理环境与准备
本次实践全程使用win11系统,具体环境与版本,是这样的:
操作系统:win11-wsl2
显卡:RTX3090*24G*2张
Python版本:3.10
依赖管理:conda
推理工具:vllm
cuda版本:12.4
pytorch版本:2.5.1
如果你还未搭建AI环境及wsl,请你到这里,先跟着操作,搭建好自己的AI环境,否则无法继续
搭建好的,直接跟着操作!
打开你的wsl!
如果你未用过,图标是这样的:
未安装?到开头的第一个链接安装!
创建conda环境!
我们统一使用conda来管理依赖,以免版本冲突,养成习惯,你应该每做一个项目,都是新的环境!
在刚刚你打开的这个窗口,输入指令,回车!
指定环境名称“ds”,指定Python版本3.10
conda create --name ds python=3.10
输入“y”,回车确认!
激活进入“ds”环境!
等待几秒后,激活当前的环境!
conda activate ds
激活后,前面会多一个环境名称,说明进入成功了!
安装pytorch!
我们cuda是12.4版本,现在,我们要安装对应的版本才行!
在环境中输入以下指令,回车安装!
conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.4 -c pytorch -c nvidia
如果你的是其他版本的cuda,比如11.8/12.1,你可以到这里下载!
https://pytorch.org/get-started/previous-versions/
这里看网速了,网速越快,耗时越短!
安装vllm!
直接安装最新版本即可!兼容!
在同一个命令窗,输入以下指令,回车!
pip install vllm -i https://pypi.tuna.tsinghua.edu.cn/simple
这里,我们使用清华源下载,避免网络不畅,网速慢问题!
到这里,环境,全部搞掂!
如果你有任何报错,请你确认,是否进入了新的conda环境!
或在末尾联系工程师-小胖,获取帮助!
第二部分:全尺寸模型下载!
授人以鱼不如授人以渔
模型下载,你可以自己在hugging face或魔搭下载!
hugging face:https://huggingface.co/models
魔搭:https://www.modelscope.cn/organization/deepseek-ai
为方便下载,雄哥已经把所有下载链接,都传到了公众号
你回复:“ds”
即可获取到所有下载连接!
假设你已经拿到了所有下载连接,你可以根据自己算力,选择合适的参数,下载到本地!
比如我要下载7B的,下载连接就是这个:
git clone https://www.modelscope.cn/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.git
还是在这个窗口,粘贴以上链接,回车!
会自动下载!
模型文件保存到当前文件夹!
第三部分:讲模型推理起来,暴露API供下游调用!
万事具备
还是在这个窗口!
输入以下指令,回车!推理!
vllm serve /root/model/DeepSeek-R1-Distill-Qwen-7B --served-model-name DeepSeek-R1-Distill-Qwen-7B --max-model-len 4096 --api-key token-abc123 --enable-auto-tool-choice --tool-call-parser hermes
出现这样,就说明推理成功了!
简单说一下参数吧!
–served-model-name DeepSeek-R1-Distill-Qwen-7B
API 中使用的模型名称。如果提供了多个名称,则服务器将响应提供的任何名称。响应的 model 字段中的模型名称将是此列表中的第一个名称。如果未指定,则模型名称将与参数相同。
–max-model-len 4096:
最大模型长度:指定模型能够处理的最大序列长度。在这里,最大长度设置为4096个词元(tokens),增加这个值可以让模型处理更长的文本,但同时也需要更多的计算资源和时间
–api-key token-abc123:
API密钥:用于身份验证的密钥,以确保只有授权用户能够访问模型服务。在这里,API密钥是“token-abc123”
–enable-auto-tool-choice
为支持的模型启用自动工具选择。用于指定要使用的解析器,–tool-call-parser
–tool-call-parser
根据您使用的模型选择工具调用解析器。这用于将模型生成的工具调用解析为 OpenAI API 格式,需要:–enable-auto-tool-choice
如果你想了解更多参数,可以到这里:
https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html!
第四部分:如何接入RAG-langchain中
因为上面,我们已经完全本地部署了
兼容openai api格式
理论上,你可以接到任何的应用中
现在演示如何接入langchain中!
from langchain_community.llms import VLLMOpenAI`` ``llm = VLLMOpenAI(` `openai_api_key="token-abc123",` `openai_api_base="http://localhost:8000/v1",` `model_name="DeepSeek-R1-Distill-Qwen-7B",` `model_kwargs={"stop": ["."]},``)``print(llm.invoke("1+1等于几?"))
就如此简单!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。