农业大模型发展重点方向
大模型是人工智能领域的技术突破,通过大规模的自监督学习与庞大的参数量,大模型仅通过少量学习样本甚至无样本就可以迁移到大量下游任务中,在多个农业问题上取得了良好成果。将大模型应用于多种农业任务中指导农业发展,使用大模型进行数据分析与决策,是未来的发展趋势,也为智慧农业、精准农业等领域的发展提供了新的方向。目前大模型及其在农业领域的应用尚处于早期阶段,仍需克服一系列挑战,但具有很强的发展潜力。
1.构建综合且集中的农业数据集
农田环境多变、场景复杂,收集大规模、多样化的数据集存在一定困难。虽然大模型的迁移能力减少了模型对农业数据的需要,但其迁移效果受数据质量的影响较大,确保数据的准确性和一致性至关重要。目前农业领域的数据集呈现相对较为局限和分散的现状,依然限制了大模型在农业上的广泛应用。尤其是文本数据,大多数现有数据集可能缺少专门针对农业领域设计,例如气候灾害数据等,与农业相关联但并不直接聚焦于农业关键领域。而要构建文本数据,使用网络爬虫既耗时又复杂,依赖于学术期刊等权威数据又可能引发版权问题等。而对于视觉数据集,大多只针对某项农业问题,规模较小且分散。无论是训练还是辅助回答,数据的质量和数量是模型成功的关键因素。因此,建立一个高质量、全面、广泛且开放共享的数据集显得尤为重要。这样的农业数据集不仅需要收集大量的农业数据,也需要采用更加先进的技术对数据进行持续的筛选和整合对齐,以反映农业研究与实践中先进且综合的成果。
2.减轻模型的训练与部署难度
农业领域涉及的作物种类繁多,不同地区的气候、土壤条件差异显著,通用的大模型难以适应所有场景,需要构建具有地域特色的专用模型或专用模块。而大模型的预训练、微调和部署工作均需要大量的计算能力与存储空间,高度依赖于高性能GPU服务器,且依然需要较长的训练时间。这种需求限制了目前大模型在农业等多个领域的进一步发展。目前,扩展性训练技术可以减少模型的GPU显存需求并提高模型吞吐量,同时QLoRA与OPTQ等技术允许模型降低参数精度来缩减模型体积,已经得到了广泛应用。此外,大模型自身的优化和发展亦有助于在较小的参数规模上实现或超越更大模型的性能,而硬件的进步也将增强模型在更广泛领域的应用潜力。未来,模型的进一步轻量化和便携化将促进其在农业等领域的普及。
3.构建基于大模型的农业决策系统
基于复杂文本、图像等信息的分析能力,大模型可以作为农业决策的核心,接入不同来源的各种模块。这些模块可以包括有物联网实时监控设备、其他人工智能模型、公开的即时信息(如天气)等。通过一定的提示,大模型可以整合多种输入来源,并推理出基于实时信息的最优策略。用户可以通过语言交互来获取简单易懂的个性化反馈与建议,甚至农业机器人可以在大模型的指导下进行自动化的管理与采收等工作。通过提高模型的泛化性,确保决策模型能够适应不同的农业环境和条件。但是,由于农业大模型更多面向农民等群体,因此农业决策需要更强的模型可解释性,以便农民能够理解和信任模型的输出。此外,还可通过融合多种外部能力与自身知识储备制定出全面可靠的农业方案,来进一步提升农业管理的效率和准确性,甚至为农业领域带来变革。
4.推动大模型在农业领域的广泛应用
当前,大模型在农业领域的应用仍然主要局限于科研阶段的小规模测试,其在公共服务方面的应用明显不足。发展和推广农业大模型正面临着涉及技术、政策、资金和农民接受能力等多个方面。此外,如何将大模型技术转化为可落地应用的具体产品和服务,以及如何通过这些产品和服务产生商业价值,是农业大模型发展另一个挑战。这些均需要政府、企业、研究机构和农民等各方共同努力,制定合适的政策和措施,推动农业大模型的可持续发展和推广。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。