随着人工智能技术的快速发展,ChatGPT 不再仅仅是一个回答问题的机器人,它已经进化为可以执行复杂任务的强大工具。这一切的背后,离不开它的 Function Calling(函数调用)机制。本文将为你详细解析这一扩展功能,揭示 ChatGPT 如何在对话过程中调用预定义函数,完成特定任务,提供实时、个性化的服务。
一、 背景与概念
ChatGPT 的 Function Calling 机制允许模型调用外部函数获取信息或执行操作。这种机制不仅增强了模型的功能,使其能够处理更复杂的任务,还大大扩展了 AI 在实际应用中的能力范围。不再局限于静态知识库的回答,ChatGPT 通过 Function Calling 可以动态获取最新信息,执行特定操作,极大提高了实用性和灵活性。
二、主要组件
Function Calling 机制主要由以下几个关键组件构成:
-
函数定义:预先定义可调用的函数,包括名称、参数类型和返回值类型等。
-
函数调用请求:用户或系统发出的调用请求,包含函数名称及所需参数。
-
函数执行器:实际执行函数的组件,可能是外部的 API 或本地逻辑处理器。
-
结果返回:函数执行完毕后,返回结果给 ChatGPT,继续对话。
三、 Function Calling 机制详细解析
一个应用如何与OpenAI的API进行交互,通过发送函数定义,接收参数,调用函数,再将结果与其他信息结合生成最终的回答,并返回给用户。下面是每一步的详细说明:
一个应用如何与 OpenAI 的 API 进行交互?以下是详细的步骤说明:
- 传入函数定义:
- 应用服务将函数定义传递给 OpenAI。
- 返回调用参数:
- OpenAI 返回调用函数所需的参数。
- 调用函数:
- 应用服务使用这些参数调用相应的函数。
- 传入结果:
- 函数调用结果被传递回 OpenAI。
- 组合回答:
- OpenAI 将函数结果与其他相关信息结合,生成完整的回答。
- 返回答案:
最终回答通过应用服务返回给用户。
四. 安全与控制
为了确保安全性和控制,函数调用机制通常包括以下措施:
-
权限控制:仅允许调用经过安全审查的函数。
-
输入验证:验证输入参数的合法性,防止恶意输入。
-
错误处理:处理函数调用过程中可能出现的错误,如网络错误、参数错误等。
五. 示例应用
这种机制在许多应用场景中非常有用,例如:
-
信息查询:调用外部 API 获取天气、新闻、股票价格等实时信息。
-
操作执行:调用函数执行系统操作,如发送邮件、创建日历事件等。
-
数据处理:调用数据处理函数,如数据分析、图表生成等。
六、案例实现
1、调用本地函数计算一个数学表达式的值
`import openai``import os``from math import *``from icecream import ic``import json`` ``# 加载 .env 文件``from dotenv import load_dotenv, find_dotenv``_ = load_dotenv(find_dotenv())`` ``# 从环境变量中获得你的 OpenAI Key``openai.api_key = os.getenv('OPENAI_API_KEY')``openai.api_base = os.getenv('OPENAI_API_URL')``model = os.getenv('MODEL')`` ``# 基于 prompt 生成文本``def get_completion3(messages, model=model):` `response = openai.ChatCompletion.create(` `# 注意,以前的 openai.ChatCompletion 要换成 openai.chat.completions` `model=model,` `messages=messages,` `temperature=0, # 模型输出的随机性,0 表示随机性最小` `tools=[{ # 用 JSON 描述函数。可以定义多个。由大模型决定调用谁` `"type": "function",` `"function": {` `"name": "sum",` `"description": "计算一组数的加和",` `"parameters": {` `"type": "object",` `"properties": {` `"numbers": {` `"type": "array",` `"items": {` `"type": "number"` `}` `}` `}` `}` `}` `}],` `)` `return response.choices[0].message`` ``def test_promopt():` `prompt = "Tell me the sum of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10."` `#prompt = "桌上有 2 个苹果,四个桃子和 3 本书,一共有几个水果?"` `#prompt = "1+2+3...+99+100"`` ` `messages = [` `{"role": "system", "content": "你是一个小学数学老师,你要教学生加法"},` `{"role": "user", "content": prompt}` `]` `response = get_completion3(messages)`` ` `# 把大模型的回复加入到对话历史中` `if (response.content is None): # 解决 OpenAI 的一个 400 bug` `response.content = "null"` `messages.append(response)`` `` ` `# 如果返回的是函数调用结果,则打印出来` `if (response.tool_calls is not None):` `# 是否要调用 sum` `tool_call = response.tool_calls[0]` `if (tool_call.function.name == "sum"):` `# 调用 sum` `args = json.loads(tool_call.function.arguments)` `result = sum(args["numbers"])`` ` `# 把函数调用结果加入到对话历史中` `messages.append(` `{` `"tool_call_id": tool_call.id, # 用于标识函数调用的 ID` `"role": "tool",` `"name": "sum",` `"content": str(result) # 数值result 必须转成字符串` `}` `)`` ` `# 再次调用大模型` `ic("=====最终回复=====")` `ic(get_completion3(messages).content)`` `` ``if __name__ == '__main__':` `test_promopt()`
输出
ic| '=====最终回复====='``ic| get_completion3(messages).content: 'The sum of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is 55.'
2、通过代码套代码实现可以算任意数学表达式需求
`import openai``import os``from math import *``from icecream import ic``import json``from math import *`` ``# 加载 .env 文件``from dotenv import load_dotenv, find_dotenv``_ = load_dotenv(find_dotenv())`` ``# 从环境变量中获得你的 OpenAI Key``openai.api_key = os.getenv('OPENAI_API_KEY')``openai.api_base = os.getenv('OPENAI_API_URL')``model = os.getenv('MODEL')`` ``# 基于 prompt 生成文本``def get_completion(messages, model=model):` `response = openai.ChatCompletion.create(` `# 注意,以前的 openai.ChatCompletion 要换成 openai.chat.completions` `model=model,` `messages=messages,` `temperature=0, # 模型输出的随机性,0 表示随机性最小` `tools=[{` `"type": "function",` `"function": {` `"name": "calculate",` `"description": "计算一个数学表达式的值",` `"parameters": {` `"type": "object",` `"properties": {` `"expression": {` `"type": "string",` `"description": "a mathematical expression in python grammar.",` `}` `}` `}` `}` `}],` `)` `return response.choices[0].message`` ``def test_promopt():` `#prompt = "从1加到10"` `prompt = "3的平方根乘以2再开平方"`` ` `messages = [` `{"role": "system", "content": "你是一个数学家,你可以计算任何算式。"},` `{"role": "user", "content": prompt}` `]` `response = get_completion(messages)` `if (response.content is None): # 解决 OpenAI 的一个 400 bug` `response.content = "null"` `messages.append(response) # 把大模型的回复加入到对话中` `ic("=====GPT回复=====")` `ic(response)`` ` `# 如果返回的是函数调用结果,则打印出来` `if (response.tool_calls is not None):` `# 是否要调用 sum` `tool_call = response.tool_calls[0]` `if (tool_call.function.name == "calculate"):` `# 调用 calculate` `args = json.loads(tool_call.function.arguments)` `result = eval(args["expression"])` `ic("=====函数返回=====")` `ic(result)`` ` `# 把函数调用结果加入到对话历史中` `messages.append(` `{` `"tool_call_id": tool_call.id, # 用于标识函数调用的 ID` `"role": "tool",` `"name": "calculate",` `"content": str(result) # 数值result 必须转成字符串` `}` `)`` ` `# 再次调用大模型` `ic("=====最终回复=====")` `ic(get_completion(messages).content)`` `` ``if __name__ == '__main__':` `test_promopt()`
输出
ic| '=====GPT回复====='``ic| response: <OpenAIObject at 0x1a97b6d3480> JSON: {` `"role": "assistant",` `"content": "null",` `"tool_calls": [` `{` `"id": "call_jSVjTMqMIMUHYCpDisvpYInp",` `"type": "function",` `"function": {` `"name": "calculate",` `"arguments": "{\"expression\":\"((3**0.5)*2)**0.5\"}"` `}` `}` `]` `}``ic| '=====函数返回====='``ic| result: 1.8612097182041991``ic| '=====最终回复====='``ic| get_completion(messages).content: '3的平方根乘以2再开平方的结果约为1.8612。'
3、从一段文字中抽取联系人姓名、地址和电话,用 Function Calling 获取 JSON 结构轻松解决,在没有大模型之前非常难解决的问题
`import openai``import os``from math import *``from icecream import ic``import json``from math import *``import requests``import logging``# 设置日志记录配置``logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')`` ``# 加载 .env 文件``from dotenv import load_dotenv, find_dotenv``_ = load_dotenv(find_dotenv())`` ``# 从环境变量中获得你的 OpenAI Key``openai.api_key = os.getenv('OPENAI_API_KEY')``openai.api_base = os.getenv('OPENAI_API_URL')``model = os.getenv('MODEL')``amap_key = os.getenv('GAODE_MAP_API_KEY')`` ``def get_completion(messages, model=model):` `response = openai.ChatCompletion.create(` `model=model,` `messages=messages,` `temperature=0, # 模型输出的随机性,0 表示随机性最小` `tools=[{` `"type": "function",` `"function": {` `"name": "add_contact",` `"description": "添加联系人",` `"parameters": {` `"type": "object",` `"properties": {` `"name": {` `"type": "string",` `"description": "联系人姓名"` `},` `"address": {` `"type": "string",` `"description": "联系人地址"` `},` `"tel": {` `"type": "string",` `"description": "联系人电话"` `},` `}` `}` `}` `}],` `)` `return response.choices[0].message`` `` `` `` ``def test_promopt():` `prompt = "帮我寄给星城老谭,地址是湖南省长沙市岳麓区湘江壹号8楼,电话1887486XXXX。"` `messages = [` `{"role": "system", "content": "你是一个联系人录入员。"},` `{"role": "user", "content": prompt}` `]` `response = get_completion(messages)` `logging.info("====GPT回复====")` `logging.info(response)` `args = json.loads(response.tool_calls[0].function.arguments)` `logging.info("====函数参数====")` `logging.info(args)`` ``if __name__ == '__main__':` `test_promopt()`
输出
2024-06-05 13:31:30,121 - INFO - ====GPT回复====``2024-06-05 13:31:30,124 - INFO - {` `"role": "assistant",` `"content": null,` `"tool_calls": [` `{` `"id": "call_QEnFRbZRBs2Eww4YbUxP7oKv",` `"type": "function",` `"function": {` `"name": "add_contact",` `"arguments": "{\"name\":\"\u661f\u57ce\u8001\u8c2d\",\"address\":\"\u6e56\u5357\u7701\u957f\u6c99\u5e02\u5cb3\u9e93\u533a\u6e58\u6c5f\u58f9\u53f78\u697c\",\"tel\":\"18874868888\"}"` `}` `}` `]``}``2024-06-05 13:31:30,124 - INFO - ====函数参数====``2024-06-05 13:31:30,125 - INFO - {'name': '星城老谭', 'address': '湖南省长沙市岳麓区湘江壹号8楼', 'tel': '1887486XXXX'}
七、总结
ChatGPT 的 Function Calling 机制极大地扩展了其功能,使其能够在对话中动态调用外部函数,提供实时、个性化和互动的服务。这一机制不仅提升了用户体验,也为开发者提供了强大的工具,帮助他们构建更智能、更强大的对话系统和应用。理解并善用这一机制,能让你在 AI 应用开发中占据领先地位。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。