ACL 2024 | InstructGraph:改进大语言模型的图数据理解与生成

论文题目:

InstructGraph: Boosting Large Language Models via Graph-centric Instruction Tuning and Preference Alignment

论文链接:

https://arxiv.org/pdf/2402.08785

代码链接:

https://github.com/wjn1996/InstructGraph

Graph指令数据:

https://huggingface.co/datasets/wjn1996/InstructGraph

当大语言模型遇到图,会发生什么样的化学反应呢?最近由华东师范大学(ECNU)和加州大学圣地亚哥分校(UC San Diego)联合提出了针对提升大模型在图推理和图生成能力InstructGraph 框架。该工作被 ACL 2024 接收。

背景:LLM与Graph

众所周知,大语言模型(Large Language Models,LLMs)是通过自回归式的 Causal Language Modeling 实现预训练,自然语言文本遵循着 token-by-token 的序列形式实现文本生成和推理。然而,图(Graph)则不是序列模式的数据,因此,如何让一个以序列为感知的大语言模型很好地理解一个图数据,是一大挑战。

最近一些工作尝试将图****神经网络等模型集成在大模型基座上,使得模型能够按照原先的图学习模式感知图,并借助大模型的生成能力实现推理。然而这类方法存在两个不足:

  • 需要改变大模型的结构,使得模型很难自适应到任意的图,同时这类方法也无法有效地将图与文本很好的进行兼容;

  • 只能够实现由图到文(Graph2Text)的转换,而无法实现图文之间的相互转换,例如 Text2Graph [1]。

为了让大语言模型更好更有效地理解图或生成图,该工作提出 InstructGraph 框架,并考虑从三个方面来实现这一目的。

  • Prompt Engineering:在输入模板层面上,如何将图与文实现比较好的对齐;

  • Instruction-tuning:在监督微调时,如何让大模型能够很好地完成图推理与生成任务;

  • Preference Optimization:在偏好对齐时,如何让那个大模型能够更准确地实现图的理解和生成,缓解幻觉问题。

提示工程:结构上对齐

文本是序列化的数据,图是结构化的数据,如何在输入层面上在不介入外部模型的条件下很自然地实现统一对齐呢?该工作想到了使用代码(Code)作为中间表示。

Code 是一种天然的包含结构化信息的序列数据,现如今大语言模型之所以能够具备很强的推理性能,也得易于代码数据的引入。因此,如果将图用代码的形式来表达,那么就巧妙地实现了图文的统一结合,而对于大语言模型来说,处理图和处理代码相似,无需刻意地在输入感知上对图进行专门的表示学习

为此提出 Code-like Format Verbalizer,对于任意一个图,都可以转换为一个代码的结构模式。

基于这个 Code-like Format 形式,在做图到文(Graph2Text)时,大模型可以像理解代码一样理解图,然后通过文本生成完成回答;在做文到图(Text2Graph)时,大模型可以像写代码一样生成一个图。这一过程充分利用了大语言模型的代码理解和生成的能力。

图指令微调

对于 GPT-4、GPT-4o 等超大规模的模型,在提示工程的引导下大模型已然可以完成的很不错。但是对于较为小规模的模型,效果依然不行,那么就需要对小模型进行监督微调来赋予其图推理和生成的能力。

本文将图指令微调划分为两大范式:

  • 图推理:给定一个 Query 和一个 Graph,回答问题;

  • 图生成:给定一个 Query,生成一个 Graph。

为了达到这个目的,该工作收集了来自 29 个不同的针对图推理和生成的任务,并进行了数据预处理和指令构建,最终构建了大约 1.6M 语料。数据来自 Wikipedia、Wikidata、DBPeidia、FIFA、Freebase、OGB、PubMed、Amazon、CiteSeerX、MoveLens、InstructUIE、InstructIE、ConceptNet、NLGraph、ArXiv、LastFM 等。

对这些图任务进行了更为细致的划分,划分为 4 个 Group,如下所示:

Graph Structure Modeling

图结构建模任务旨在设计相应的指令,让 LLM 能够理解 Graph 结构相关的信息,包括图连通性、环、最短路径等信息。先前工作 NLGraph [2] 提出了 8 种与 Graph 结构相关的 benchmark。这里挑选了前 7 个任务的训练集作为训练数据。

另外还增加了两个 NLGraph 中没有提及的任务:

  • Graph Degree Prediction:给定一个 Graph,计算目标节点的度数,有向图则包括入度和出度。

  • Graph Diameter:给定一个 Graph,计算其直径。

Graph Language Modeling

图语言建模旨在设计相应的指令,让大模型根据 Graph 来完成语言建模。这里包含若干类别的任务:

  • Caption Generation:基于 Wikipedia 和 Wikidata,针对 Wikidata 给定的一个知识图谱,生成出 Wikipedia 中的文本描述;

  • Question Answering:输入一个 Graph,给定一个问题 Query,回答相应的问题;

  • Nodel Classification:输入一个 Graph,对其中一个节点进行分类;

  • Link Prediction:输入一个 Graph,对其中两个节点的边类型进行预测;

  • Relevance Inspection:输入一个 Graph 和一个文本描述,判断图文之间的相关性;

  • Collaboration Filtering:输入一个协同图(二分图),预测两侧节点之间的关系;

Graph Generation Modeling

图生成建模旨在让大模型根据指令生成一个 Graph。生成的过程等价于生成 Code。图生成包含两个类别的任务,分别是根据文本生成一个图,类似于信息抽取和知识图谱构建;另一个任务则是生成一个结构图。

Graph Thought Modeling

除了针对 Graph 进行理解和推理以外,对于普通的文本生成和推理任务也可以间接利用 Graph。例如数学计算推理时,原始的 Chain-of-Thought(CoT)是通过 text-based reasoning chain 的形式进行推理的,而我们可以敦促模型先生成一个计算图,然后再基于这个计算图生成答案。这一过程也类似于大模型 Agent 中的 Planning 环节。

所有任务数据列举如下所示:

图偏好对齐

先前的很多面向 Graph+LLM 的工作,均忽略了 Graph 相关的偏好优化问题。我们发现 LLM 在针对 Graph 进行 instruction-tuning 阶段,同样存在一些偏好问题。我们认为除了 LLM 本身存在的 harmless、helpless 等问题外,针对 Graph 也依然存在如下问题:

  • 输入的 graph 可能存在错误、冗余,或于大模型本身存在冲突的信息。

例如输入的 graph 中,存在冲突的关系,例如 a -> b [relation=“r”], b -> a [relation=“r”] 输入的graph(尤其是知识图谱等),存在与真实知识冲突的,例如输入的graph 中国 -> 日本 [relation=“接壤”]

  • 大模型生成的内容与输入的 graph 存在不一致(内部幻觉);

例如在 KBQA 时,大模型可能回答的答案可能不在子图中出现过。如果子图中没有,应该修正回答为“正确答案是 xxx,不过如果只关注给定的图,则不存在答案”

  • 大模型生成的内容与真实知识存在不一致(外部幻觉);

大模型生成的内容中有错误事实信息;大模型生成 graph 时,出现胡编乱造 “给你三个节点,生成含有十条边的图”:这个问题很显然无法回答,需要让 LLM 优化。

为了避免过多的人工介入,构建偏好数据主要通过负采样的形式实现。负采样数据来源于两种途径:

  • 启发式构建:修改 graph 结构,从而获得错误的 graph,其与对应的文本不一致;

  • ChatGPT 改写:设计 instruction,让模型编造一个与 graph 信息不一致的文本;

P.S.:需要获得错误的文本区间

提出两种 non-reward 的图对齐训练方法:Graph-based DPO(GDPO),即利用 DPO 的优化算法,根据上述两个 graph 存在的特性,构建 pair 数据。

实验

实验中,挑选 LLaMA2-7B 作为基座进行模型微调和对齐。整体实验如下图所示,InstructGraph 的总体性能超越 GPT-4。超越了GPT-4 约 13%,超越 GPT-3.5约 38%。

针对信息抽取任务的图生成任务,进行了较为细粒度的评估。生成一个图通常包含两个角度,一个是判断实体/节点的准确性、另一个是实体/节点之间关系的准确性,结果如下图所示:

针对偏好对齐训练后的模型,实验结果如下所示:

可发现,经过偏好对齐调优后的模型性能可以进一步得到提升,提升效果接近 10%。此外,InstructGraph 在通用的 NLP 任务上效果也能够保持与 LLaMA2 相似的结果。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值