导读
合规管理、内控管理在金融行业中发挥着重要作用,既是企业经营的重要组成部分,也是保障企业可持续发展的关键环节。本次专家将围绕大模型下智能合规系统的建设与应用展开。从解读政策要求和政策支持,到智能合规系统的建设路径,最后再从员工行为评估和制度管理画像两个实例分享实践经验。
01.政策解读:随着监管力度加大,构建智能化、数字化的内控合规平台,已成为行业共识。
现在的监管趋于严格,无论是监管部门,还是企业内部都下发了很多文件,比如《金融机构合规管理办法》, 2024 年 8 月下发,提到“制定合规管理制度,建立健全科学先进、全面覆盖、权责清晰、独立权威、务实高效的合规管理体系”。2021 年时,相关部门定义了“合规建设元年”,里面提到“提升内控合规管理的数字化和智能化水平”。换句话说,因为合规所面临的环境在变,所以现在合规管理的手段也在变。
不管是对岗位、对人、对系统的建设,以及对于智能化和数字化的要求,监管都提出了明确的要求,所以企业为持续提升数字化风控能力,确保风控可防可控,正在向数字化、智能化合规体系挺进。从“人控”,向“机控”和“智控”的方向转变。
当前企业的合规管理也面临着一些挑战,同时合规管理的重要性也逐渐地在提升。
首先如前面提到的监管正在加强。其次传统的内控合规体系,尤其是内部组织的构建,人员的能力建设已经很难满足企业日益增长的需求,需要改进和完善。而且现在内容合规的需求也在凸显,企业对于合规的认知也在不停的变化,包括国际标准和国内标准,对于合规的认知,从原来框架性的要求到现在具体化的、场景化的要求逐渐转变,从上到下树立全员的合规安全的管控意识。
利用大数据、人工智能技术,金融企业正在逐步落实合规标准化、一体化的建设。构建智能化、数字化的内部合规一体化平台,已经成为行业内的普遍共识。
从整体金融市场上也可以感受到企业的重视,2021 年监管在疫情期间发布文件,企业在 2022 年基本就有零星的启动,在 2023 年- 2024 年的时候,不管企业以前是否有建设合规系统,现在都在重新建设或者开始建设。
去年我们看到有独立建设系统的银行 60 余家,1/3的银行的有合规系统建设需求,初步判断三年内会把新一轮的智能化合规系统建设完成。总结各企业建设智能合规系统的建设目标与愿景,离不开三点:构建支撑战略决策、应对监管要求、适应风险变化。
02.构建智能化、一体化的合规管理体系建设路径
从内控合规部门来看,构建智能化、一体化的合规管理体系需要整合内控、合规风险的管理需求,从原来的信息化、流程化、自动化,发展到基于大数据驱动和AI大模型技术驱动的数字化和智能化合规体系。建设合规体系知识库,可以为企业提供实时准确的风险信息和预警,以知识驱动企业合规决策。
从内控合规部门职责来看,有内控管理和监督职责、内控体系建设职责、案件防控管理职责、法律事务管理员工职责,以及反欺诈管理职责等等。所以建设一体化合规系统的功能宽度也是非常大的。
经过高度抽象后,设计了如上图的功能架构图。
首先顶层建设上,建设驾驶舱,可以展示岗位画像、员工画像、机构画像、风险画像、问题画像等,,领导可以根据风险分布第一时间进行决策。
其次驾驶舱的内容来自于整个作业过程,包括整改管理、问责管理、问题管理。当发现问题,可以根据整改管理办法,对问题进行整改和要求,根据整改结果启动问责管理流程。
那问题来自于哪里?来自于日常管理手段,包括合规管理、内控管理、操作风险管理、员工行为管理、案件案防管理、非现场排查等日常的作业手段。通过这些管理手段,在日常工作过程中,会积累大量的企业内部知识,会形成合规智库,包括行业监管成果以及同行业的知识放在合规智库里面,以支撑系统的正常运行。
最后就是基础设施层,包括AI知识平台、基础设备、数据处理、模型处理等。
接下来将实际展开合规管理、内控管理、操作风险管理、员工行为管理4部分的功能延展。
-
合规管理涉及到制度管理、流程管理、法律事务管理和合规文化建设。对于制度画像和制度问答,是可以用到大模型的。但制度管理层面大模型是很难解决的,一定会结合其他的传统人工智能的模型来解决。
-
内控管理包括内控矩阵、内控检查、内控评价、整改管理。内控矩阵的管理是整个合规建设里的基础建设。因为它是标准化、统一化的支撑作业的过程。通过风险矩阵可以标准化、流程化、数字化的实现内控检查流程。
-
操作风险有三大管理工具,加上压力测试和资本计量,最终形成了统一的操作风险体系。该体系可以通过数字化、智能化的手段驱动损失数据、关键风险指标、风险自评估。最后可以用大模型生成报告,提升工作效率。
-
员工行工管理是非常有必要的,可以通过员工管理工具,让日常工作组织更有序、更简短、更快捷。通过日常管理、网格化管理、合规档案、员工分析、员工画像等让员工更有立体感,让企业的管理者和决策者更加直观看到岗位风险、员工风险。
以上四部分通过 AI 知识平台里的建模工具可以实现的。我们利用大模型和传统模型的理解能力、生成能力和分析能力,生成合规智库,嵌入到作业流程中,让合规人员享受到人工智能时代的技术红利。推动大数据分析和人工智能技术在合规场景下的普及化和大众化。
03.案例拆解:员工行为评估与制度管理画像场景的应用实践
第一个是员工行为评估的案例。
现在做员工评估的方法有很多,包括访谈、尽调、问卷、家访等等,这些方式评估的方法标准不固定,方法比较单一,主观性太强,没有数据支撑,评估周期也不固定。
建议企业可以通过题库+模型的方式把员工评估的方法固定下来。建立健全的评估人和被评估人之间的反馈机制。也可以通过最后展现的各类指标,对员工升职升迁进行评估,或者制定跟绩效相关的激励和惩罚措施。
对员工行为评估可以从基本信息、资产负债能力、关系图谱、风险行为4个方面开展,最终会形成一张员工画像。
同时可以下钻到每一个具体的标签和指标,以及具体的明细数据中。如果有多个员工都是某一个风险等级的员工,也会有群体画像,,每一个高风险员工或同级别的风险员工,它的风险表现标签和维度是不一样的。并且也可以看到这个员工在哪个机构上,机构的风险也能非常清楚,在看风险员工画像的时候,就会非常立体。
第二个是制度管理画像的案例。大模型可以比较好实现制度内容知识问答、智能问答。但做制度的问答,需要经过制度梳理,成体系以后才能做问答。
当我们在梳理制度体系的工作安排和进度时,发现有很多的效率不高的地方,这时需要一个智能化的制度管理系统,包括开始的制定制度,到最后的制度落地和制度使用,都能变得极其高效。
一个智能化的制度管理系统可以包括:制度模板要规范化、制度检索及问答要智能化、制度的监测提醒、自动化的制度解析与审查、在线编辑技术、自动任务启动。
构建制度管理系统时,可以分为五步。
-
第一个是制度的血缘关系维护,包括外国的制度血缘关系、内部的制度血缘关系以及外归与内归的制度血缘关系,以可视化图谱的方式去展示。
-
第二个是把内外规制度通过向量进行拆解,通过向量的拆解,我们对不同的制度条目自动地分配给组织部门做制度的新增、修订和废止。
-
第三个是通过对外规制度的智能分析比对,以及内规制度智能分析比对,利用智能算法给组织部门进行智能推荐。
-
第四个是外规内规的全文检索。
-
第五个是基于向量知识库的制度智能问答。
这一系列的工作要做成可视化,让合规管理部门,以及制度制定和责任部门,有效的结合在一起。和上述的员工画像类似,根据制度的用途和制度要求,从不同的维度对制度进行画像呈现,不但要对结果进行画像呈现,还对整个制度的执行过程也进行可视化,来给予相关工作人员在整个过程中快速的分析和应用。
上面是我分享的两个例子,在整个智能合规系统建设过程中,本质是基于知识库的智能合规系统。在执行层,要通过数据分析让执行的工作效率更高。在管理层,通过辅助生成手段来进行各个维度的画像和展示,让决策的依据更准确,更合理的规划和安排工作,加强管控。在战略层,要全览企业的全貌,全面把控企业的整体情况,方便战略管理层更精准地进行决策。
利用大模型跟小模型之间的交互和互调,更好的满足企业内部精准和快速的响应要求,让合规内控管理变得更智能、更人性、更普及、更大众。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。