阿里 Qwen-2.5 Coder 32B 测评:成绩亮眼,实战为何让人失望?

阿里巴巴最近(2024.11)发布的Qwen-2.5 Coder 32B在代码生成领域引起了广泛关注。这款模型作为专为代码生成设计的系列产品之一,不仅在多个基准测试上表现优异,还通过开放许可为开发者提供了更多实际应用的可能。然而,尽管在标准化测试中成绩亮眼,Qwen-2.5 Coder在真实的开发场景中的实战表现却不尽如人意。以下是对Qwen-2.5 Coder的详细评测。

1. Qwen-2.5 Coder 32B简介

Qwen-2.5 Coder系列是阿里巴巴推出的最新代码生成模型,具体信息来自于阿里巴巴发布的Qwen2.5-Coder Technical Report。根据该技术报告,Qwen-2.5 Coder在前一代CodeQwen1.5的基础上进行了大幅升级,推出了从0.5B到32B不同参数量的六个模型。作为一个代码专用模型,Qwen-2.5 Coder基于Qwen2.5架构构建,预训练数据规模超过5.5万亿标记,采用了严格的数据清洗、大规模的合成数据生成和数据平衡策略。这使得模型在代码生成、补全、推理和修复等任务中达到了SOTA(state-of-the-art)水平,甚至超过了其他同规模的大模型。

阿里巴巴团队认为,Qwen-2.5 Coder的发布将为代码智能领域带来新的研究契机,并通过其开放许可支持开发者在实际应用中广泛采用。


阿里团队的报告里的测评结果

2. Aider LLM Leaderboards表现

Aider测试方法

在Aider代码编辑榜单中,模型被要求在133个小型Python代码任务上完成代码编辑操作,这些任务来自Exercism。这些任务设计用来评估模型在代码修改、集成以及生成新代码片段时的准确性和效率。每个模型不仅需要在Python源文件中插入正确的代码,还要符合特定的编辑格式要求,并在无人工干预的情况下成功执行所有修改。这一测试标准能较好地衡量模型的编程能力、代码集成适配性及代码生成的自动化水平。

Qwen-2.5 Coder的表现评价

在这一评测中,Qwen-2.5 Coder-32B的表现相对优秀,完成了73.7%的任务,且编辑格式均符合要求。尽管如此,该模型的整体排名仍落后于Claude 3.5系列等顶尖模型,显示出在准确性和整合能力上的差距。Qwen-2.5 Coder虽具备一定的代码生成实力,但与其他领先模型相比,其在自动化代码修改和编辑精确度上仍有提升空间。尽管如此,这一成绩表明Qwen-2.5 Coder在Aider编辑榜单上的竞争力,尤其是其代码规范和格式的高匹配率值得肯定。

各模型的Aider评测结果
模型名称完成率 (%)编辑格式符合率 (%)Aider 命令编辑方式
Claude-3.5-Sonnet-2024102284.299.2aider --model anthropic/claude-3-5-sonnet-20241022diff
o1-preview79.793.2aider --model o1-previewdiff
Claude-3.5-Sonnet-2024062077.499.2aider --model claude-3.5-sonnet-20240620diff
Claude-3.5-Haiku-2024102275.295.5aider --model anthropic/claude-3-5-haiku-20241022diff
Qwen2.5-Coder-32B-Instruct (whole)73.7100.0aider --model openai/Qwen2.5-Coder-32B-Instructwhole
DeepSeek Coder V2 0724 (deprecated)72.997.7aider --model deepseek/deepseek-coderdiff
GPT-4o-2024-05-1372.996.2aiderdiff
ChatGPT-4o-latest72.297.0aider --model openai/chatgpt-4o-latestdiff
DeepSeek V2.572.296.2aider --deepseekdiff
Qwen2.5-Coder-32B-Instruct (diff)71.494.7aider --model openai/Qwen2.5-Coder-32B-Instructdiff
GPT-4o-2024-08-0671.498.5aider --model openai/gpt-4o-2024-08-06diff
o1-mini (whole)70.790.0aider --model o1-miniwhole
DeepSeek Chat V2 0628 (deprecated)69.997.7aider --model deepseek/deepseek-chatdiff

以上结果显示Qwen-2.5 Coder在特定任务中具有一定竞争力,但尚未达到领先模型的顶尖水平,其准确率和集成表现还有提升空间。

3. 实际测试表现与不足

以下是国外最大视频网站的博主AICodeking测评后的评价。

3.1 Cline集成测试——初步测试与失望

Cline是一个VSCode插件,能够让用户直接在编辑器中调用大模型进行代码生成和修改,方便在开发流程中灵活应用LLM模型。博主首先通过Cline插件对Qwen-2.5 Coder进行了评估,以观察其在Next.js等复杂项目中的代码生成能力。初步测试显示,该模型在基本HTML项目上能够有效生成代码,但在Next.js项目的复杂任务中,模型的表现却显得不稳定。特别是在需要调用外部工具时,Qwen-2.5 Coder表现出工具调用不可靠、生成内容不够完整的缺陷。对比GPT-4、Claude 3.5 Sonnet和Deepseek等模型,Qwen在复杂项目的代码生成和上下文处理方面稍显不足。因此,Cline测试结果表明,该模型在多模块项目中的表现仍有待改进,难以满足高效代码生成的需求。

cline是一款AI辅助编码代理可以对接各种大模型

3.2 Aider集成测试——进一步测试与挫败

Aider是一个专为代码编辑设计的AI开发辅助工具,通过指令引导LLM在代码中进行精确的添加、编辑和调试。博主在Aider环境中对Qwen-2.5 Coder的代码编辑能力进行了深入测试,重点考察其在上下文理解和跨文件逻辑处理上的表现。测试中,通过Aider在Next.js项目内进行多次任务生成,结果显示该模型在较复杂的代码上下文中缺乏精确性。尤其是在跨文件的逻辑一致性和上下文理解方面,模型频繁出现错误,往往需要手动干预。这种局限性与博主对高效自动化代码生成的期望相去甚远。尽管Qwen-2.5 Coder在一些简单模块上实现了基本成功,但整体输出仍然偏向于简单代码,难以完成复杂项目的集成需求。

qwen 2.5 32B在aider里的集成过程

总体来看,这两项集成测试的结果表明,尽管Qwen-2.5 Coder在基准测试中表现不错,但在真实的开发场景中,其在稳定性、工具调用和代码集成方面仍有较大改进空间。

结论

综合来看,尽管Qwen-2.5 Coder在基准测试上取得了亮眼成绩,但其在实际开发环境中的表现不尽人意。我更倾向于选择Deepseek、Mistral Large和Cestal等模型,这些模型在日常开发中的表现更为可靠。Qwen的开发方向或许应该更多关注模型在真实应用中的适用性,而不仅仅是基准测试的表现分数。综上所述,Qwen-2.5 Coder的发布虽具有潜力,但当前版本尚不具备足够的实用性,不会是我个人的首选。

希望这篇评测文章对各位开发者了解Qwen-2.5 Coder的实际能力有所帮助,也期待该模型在未来的更新中进一步改进和优化。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值