OpenAI新发布的O1模型,让AI推理成了行业焦点。这是首次在AI系统中,推理计算占了很大比重。随之诞生的推理时ScalingLaw表明,让模型多"思考"一会,准确度就会更高。Anthropic也在跟进,推出非常依赖推理能力的“Computer Use”的Agent功能。这说明AI应用越来越复杂,对推理能力的要求也越来越高。
推理性能直接影响用户体验 - 反应快不快,放在本地还是云端,都会影响实际使用感受。用的人越多,需要的算力就越大,这就涉及到成本和效率问题了。所以现在各大科技公司都在抢占推理这个领域,谁能做得好,谁就能占优势。
近日,Eric Flaningam对外刊载了一篇大模型推理的市场分析文章,文中一些关键洞察值得注意。
市场现状分析
1. 市场规模与增长
-
推理计算需求呈现爆发式增长,据NVIDIA估计,未来推理市场规模将较现在扩大数百倍
-
目前推理业务已占NVIDIA数据中心收入的40%,揭示推理巨大的市场规模
2. 市场参与者分类
当前市场形成了五层完整的服务体系:
-
基础模型API(如OpenAI)- 最易用但灵活性最低
-
专业推理服务商(如Fireworks AI、DeepInfra)- 优化开源模型部署
-
AI云服务提供商(如Coreweave)- 提供定制化算力服务
-
超大规模云服务商 - 传统云服务商和新型 AI 云服务提供商共同参与,提供全栈AI服务平台
-
AI硬件供应商 - NVIDIA 继续主导,AMD 等传统厂商积极追赶,面向高度定制化需求
竞争格局分析
1. 硬件层面
-
NVIDIA依然占据主导地位,推理收入占其数据中心业务40%
-
AMD通过MI300X系列进军市场,预计年收入可达50亿美元
-
众多创新创业公司(如Groq、Cerebras)带来差异化竞争
2. 服务层面
-
推理服务提供商主要在开源模型部署方面竞争
-
关键竞争要素:推理成本、延迟性能、吞吐能力
-
硬件厂商开始向上游服务延伸,如NVIDIA收购OctoAI
发展趋势预测
1. 边缘计算成为新战场
-
本地推理优势明显:降低企业运营成本,提升用户体验
-
苹果、高通等厂商积极布局边缘AI芯片
-
小型模型进步将加速边缘推理发展
2. 市场分化趋势
-
云端推理:面向高性能、复杂任务场景
-
边缘推理:面向消费级应用和实时响应场景
-
混合部署:将成为主流架构选择
3. 价值链重构
-
硬件层面:性能与成本的平衡将决定竞争力
-
服务层面:差异化和垂直整合成为核心竞争策略
-
应用层面:场景定制能力日益重要
结论与展望
AI推理市场正处于快速发展期,竞争格局尚未完全固化。随着技术进步和应用场景拓展,市场将进一步细分和专业化。企业需要根据自身优势,在云端推理与边缘计算之间找到最优定位,打造差异化竞争优势。
未来,伴随着小型模型技术的进步和边缘计算能力的提升,我们很可能见证AI推理的新一轮革命,这将为整个产业带来更多创新机遇与发展可能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。