如今,人工智能(AI)已经在医疗行业得到的应用,从行政管理(如优化医疗编码)到临床应用(如提升放射科医生对医学影像的分析能力),AI 可以帮助医疗系统提高效率、优化资源配置。AI 在医疗领域的另一个重大突破方向是预测性 AI,即利用数据来预测未来健康风险,从而推动医疗模式从诊断疾病向主动预防转变。
Apple Heart Study 的共同首席研究员、斯坦福大学医学教授 明图·图拉基亚博士(Dr. Mintu Turakhia),在患者护理、临床试验、数据科学、人工智能、医疗设备监管及数字健康产品的创建和商业化方面拥有 25 年以上的经验。他认为,未来,人工智能的重点将从诊断疾病转向预测健康风险,从而推动主动性和预防性医疗的发展。
01.从模式识别到诊断辅助
人工智能在医疗领域的最初突破主要集中在分类任务,即通过模式识别来诊断疾病。例如:
医学影像分析:深度学习算法在 X 光片、超声波或心电图(ECG) 的诊断能力上,往往可以超越人类医生。
病理学检测:AI 已广泛用于检测 肺部结节、乳腺癌、脑卒中 等疾病,提高筛查效率。
电子健康记录(EHR)分析:AI 还能从电子病历中提取关键信息,辅助医生进行疾病诊断和治疗方案决策。
然而,预测能力远比诊断更具挑战性,因为它涉及长期健康趋势建模、个体化风险评估和多因素综合分析。
02.从诊断到健康风险评估
预测性 AI 的核心目标是评估患者未来发生疾病或临床事件的风险,而不仅仅是识别当前疾病。例如:
心电监测数据:即使目前未检测到房颤(AF),AI 仍然可以从数据中发现未来罹患房颤的风险信号。
生命体征、睡眠模式和活动数据:这些数据不仅能用于健身或睡眠追踪,还可以预测未来因心力衰竭住院的风险。
要实现这一预测能力,AI 需要整合多种数据源,并将其与临床结果相关联。目前,医疗数据仍然是孤立的,如影像数据、ECG、智能手表数据、电子病历和医保住院数据等都分别存储。如果能在患者层面整合这些数据,就可以构建多维度、纵向的数据集,从而训练 AI 模型进行更精准的健康风险预测。
03.早期干预和预防价值巨大
如何实现 AI 预测健康风险?——以心电监测为例
第一步:心律失常的 AI 诊断
早在 2019 年《Nature Medicine》 期刊(Hannun AW et al.)的研究中,就已证实 AI 可用于高效诊断心律失常(AF),并在后续研究中进一步优化了算法。
第二步:预测未来的房颤风险
AI 还可以检测微小的心脏结构和电信号变化,这些变化可能意味着未来罹患房颤的可能性增加。通过持续 14 天的心电图监测数据,AI 可以识别人类医生难以察觉的细微模式,从而预测未来房颤的可能性。
第三步:扩展到更广泛的健康风险预测
AI 进一步结合其他生物指标,可以预测未来发生中风或心力衰竭的可能性,因为这两种疾病通常由房颤引发。
通过 AI 监测生命体征数据,可以在心衰恶化前提供预警,让医生提前干预,避免住院风险。
04.远程医疗 + AI:让预测变得触手可及
远程监测患者健康数据的做法早在 30 多年前就已存在。上世纪 90 年代,植入式心脏设备(如起搏器和除颤器)的制造商就开发了远程监测系统。
如今,随着传感器微型化的发展,远程健康监测变得更加普及:
如智能手表 可检测持续的不规则脉搏,并提醒用户可能存在房颤风险,使其尽早就医。
AI + 可穿戴设备 结合 ECG、生命体征、睡眠数据等信息,建立长期健康模型,以便在临床事件发生前就识别健康风险。
例如:预测房颤、心力衰竭或睡眠呼吸暂停的发生。
监测慢病(如糖尿病、高血压)的恶化趋势,并在住院风险增加时预警。
然而,AI 预测模型必须足够精准,否则可能会造成误报,影响医生的判断。
05.预测性 AI 的临床应用方向
未来,预测性 AI 可以应用在两个主要层面:
(1)患者级别:精准风险评估
目前,医生依赖于传统风险评估工具,但它们仅考虑少数变量,预测能力有限。
AI 通过整合数百个变量(如基因、ECG、生命体征),计算更精准的个性化风险评分,帮助医生做出更好的治疗决策。如,AI 可确保所有房颤患者都接受符合指南的抗凝治疗,从而降低中风风险。
(2)人群级别:优化医疗资源
预测性 AI 可筛选高风险人群,提前采取预防措施,降低急诊和住院率。
一些医疗系统正在测试生成式 AI 代理(如虚拟护士),用于远程随访和慢病管理,提升患者依从性。
预测性 AI 正在推动医疗模式从 “被动诊疗” 向 “主动预防” 过渡。AI 需要整合多维度健康数据,并进行长期趋势分析,才能实现真正精准的健康风险预测。
未来,预测性 AI 将与医院信息系统(HIS)、远程监测设备、可穿戴设备深度融合,形成更全面的智能医疗生态。
总之,AI 不是要取代医生,而是要让医生更聪明、更高效。随着 AI 预测能力的不断成熟,医疗保健将变得更精准、更普惠,让每个人都能更早发现健康风险,享受更长寿、更健康的生活。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。