LangChain 是一个专为构建基于大语言模型(LLMs)的应用而设计的强大框架。它可以帮助开发者高效地创建智能对话、搜索、数据处理、代码生成等 AI 相关应用。
本文将从基础概念入手,逐步深入,帮助你全面掌握 LangChain 的核心能力。
1. LangChain 简介
1.1 什么是 LangChain?
LangChain 是一个 Python 和 JavaScript(TypeScript)库,旨在简化 LLM 的开发流程。它主要提供以下功能:
- LLM 封装:支持 OpenAI、Anthropic、Google Gemini、本地 LLM(如 Llama、ChatGLM、DeepSeek、QianWen)
- Prompt 模板:管理和优化 Prompt 设计
- 记忆(Memory):让 LLM 具有“短期记忆”能力
- 链(Chains):将多个调用组合成复杂任务
- 代理(Agents):让 LLM 具备自主决策能力,调用 API、搜索信息
- 工具(Tools):与外部系统交互,如数据库、搜索引擎、Python 代码执行
- 文档加载 & 知识库:集成向量数据库,如 FAISS、Chrome、Weaviate、Pinecone 等
2. 安装与环境配置
2.1 安装 LangChain
pip install langchain langchain_community
如果你要使用本地模型:
pip install langchain_ollama
2.2 配置 API Key
如果使用 OpenAI,需要设置 API Key:
import osos.environ["OPENAI_API_KEY"] = "your-api-key"
本文使用的是本地部署的DeepSeek R1大模型,不需要配置API Key。
3. 快速入门:使用 LLM 进行简单对话
3.1 调用 本地部署DeepSeek R1
from langchain_ollama import ChatOllamafrom langchain.schema import HumanMessage
# 初始化 LLM 实例,指定模型(例如:deepseek-r1:7b)llm = ChatOllama(model="deepseek-r1:7b")
# 构造一条用户消息并发送给 LLMresponse = llm([HumanMessage(content="你好,LangChain 是什么?")])
# 输出 LLM 的回复 print(response.content)
4. Prompt 设计与优化
4.1 使用 Prompt 模板
from langchain.prompts import PromptTemplate
template = PromptTemplate( input_variables=["name"], template="你好 {name},请介绍一下 LangChain。")
prompt = template.format(name="小明")print(prompt)
5. Memory:让对话具有记忆
from langchain.memory import ConversationBufferMemoryfrom langchain.chains import ConversationChainfrom langchain_ollama import ChatOllama
llm = ChatOllama(model="deepseek-r1:7b")memory = ConversationBufferMemory() # 使用内存缓冲区记录对话conversation = ConversationChain(llm=llm, memory=memory)
# 第一轮对话,模型记住用户信息print(conversation.predict(input="你好,我叫小明。"))
# 第二轮对话,模型可以回忆用户先前的内容print(conversation.predict(input="我刚才说我叫什么名字?"))
6. Chains:组合多个 LLM 调用
from langchain.chains import LLMChainfrom langchain.prompts import PromptTemplatefrom langchain_ollama import ChatOllama
template = PromptTemplate( input_variables=["question"], template="请用简洁的方式回答:{question}")
llm = ChatOllama(model="deepseek-r1:7b")chain = LLMChain(llm=llm, prompt=template)response = chain.run("LangChain 可以做什么?")print(response)
7. Agents:让 AI 具备决策能力
from langchain.agents import AgentType, initialize_agentfrom langchain.tools import Toolfrom langchain_ollama import ChatOllama
def get_weather(location: str): return f"{location} 的天气是晴天,气温 25°C"
weather_tool = Tool(name="Weather", func=get_weather, description="提供天气信息")
agent = initialize_agent( tools=[weather_tool], llm=ChatOllama(model="deepseek-r1:7b"), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
response = agent.run("广州的天气如何?")print(response)
8. 知识库:向量数据库检索
8.1 加载文档并转换为向量
from langchain.document_loaders import TextLoaderfrom langchain.text_splitter import CharacterTextSplitterfrom langchain.vectorstores import FAISSfrom langchain.embeddings.openai import OpenAIEmbeddings
loader = TextLoader("example.txt")documents = loader.load()
splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)texts = splitter.split_documents(documents)
vectorstore = FAISS.from_documents(texts, OpenAIEmbeddings())query = "LangChain 是什么?"retrieved_docs = vectorstore.similarity_search(query)print(retrieved_docs[0].page_content)
9. LangChain 在实际项目中的应用场景
- 智能客服系统(结合 Memory & Agents)
- AI 搜索引擎(结合 知识库 & 向量数据库)
- 自动化办公助手(结合 LangChain Tools & Agents)
- 代码生成 & 调试助手(结合 LLM & Prompt Engineering)
- 金融、法律文档问答系统(结合 RAG 检索增强生成)
10. 进阶优化:LangChain 加载 本地 LLM,不通过ollama代理
如果你想用 本地 LLM(如 ChatGLM、Llama2),可以使用 llama-cpp-python:
pip install llama-cpp-python
案例:
from langchain.llms import LlamaCpp
llm = LlamaCpp(model_path="path/to/llama2.gguf", n_ctx=2048)response = llm("请介绍一下 LangChain")print(response)
11. 结合 Web 应用:LangChain + FastAPI
from fastapi import FastAPIfrom langchain_ollama import ChatOllama
app = FastAPI()llm=ChatOllama(model="deepseek-r1:7b")
@app.get("/chat")def chat(query: str): return {"response": llm.predict(query)}
启动命令:
uvicorn main:app --reload
12. 结合 Vue3/Flutter 构建 LangChain 前端应用
Vue3 案例
这个示例是一个单文件组件,它包含一个输入框、一个按钮和一个显示回复的区域。用户输入问题后,点击按钮即可调用后端 API 获取回复。
<template> <div class="app"> <h1>LangChain Chat</h1> <input type="text" v-model="query" placeholder="输入你的问题..." /> <button @click="sendQuery">发送</button> <p v-if="response">AI 回复:{{ response }}</p> </div></template>
<script>import { ref } from 'vue';
export default { name: "LangChainChat", setup() { const query = ref(''); const response = ref('');
const sendQuery = async () => { if(query.value.trim() === '') return; try { const res = await fetch(`http://127.0.0.1:8000/chat?query=${encodeURIComponent(query.value)}`); const data = await res.json(); response.value = data.response; } catch(e) { response.value = "请求出错:" + e.message; } }
return { query, response, sendQuery } }}</script>
<style>.app { max-width: 600px; margin: 0 auto; padding: 2em; font-family: Arial, sans-serif;}
input { width: calc(100% - 100px); padding: 0.5em; margin-right: 10px;}
button { padding: 0.5em 1em; cursor: pointer;}
p { margin-top: 20px; font-size: 1.1em; color: #333;}</style>
Flutter 案例
下面的 Flutter 示例展示了一个简单的应用,包含一个文本输入框、一个按钮和一个显示回复的区域。点击按钮后,应用通过 HTTP 请求 FastAPI 接口,并在界面上展示 AI 回复。
import 'package:flutter/material.dart';import 'package:http/http.dart' as http;import 'dart:convert';
void main() => runApp(LangChainChatApp());
class LangChainChatApp extends StatelessWidget { @override Widget build(BuildContext context) { return MaterialApp( title: 'LangChain Chat', theme: ThemeData( primarySwatch: Colors.blue, ), home: ChatScreen(), ); }}
class ChatScreen extends StatefulWidget { ChatScreen({Key? key}) : super(key: key);
@override _ChatScreenState createState() => _ChatScreenState();}
class _ChatScreenState extends State<ChatScreen> { final TextEditingController _controller = TextEditingController(); String _response = ''; bool _loading = false;
Future<void> _sendQuery() async { final query = _controller.text; if(query.isEmpty) return;
setState(() { _loading = true; _response = ''; });
final url = 'http://127.0.0.1:8000/chat?query=${Uri.encodeComponent(query)}';
try { final response = await http.get(Uri.parse(url)); if (response.statusCode == 200) { final data = json.decode(response.body); setState(() { _response = data['response']; }); } else { setState(() { _response = '请求失败,状态码:${response.statusCode}'; }); } } catch (e) { setState(() { _response = '请求错误:$e'; }); }
setState(() { _loading = false; }); }
@override void dispose() { _controller.dispose(); super.dispose(); }
@override Widget build(BuildContext context) { return Scaffold( appBar: AppBar( title: Text('LangChain Chat'), ), body: Padding( padding: const EdgeInsets.all(16.0), child: Column( children: [ TextField( controller: _controller, decoration: InputDecoration( labelText: '输入你的问题', border: OutlineInputBorder(), ), ), const SizedBox(height: 10), ElevatedButton( onPressed: _loading ? null : _sendQuery, child: _loading ? CircularProgressIndicator(color: Colors.white) : Text('发送'), ), const SizedBox(height: 20), if (_response.isNotEmpty) Text( 'AI 回复:\n$_response', style: TextStyle(fontSize: 16), ), ], ), ), ); }}
总结
- LangChain 是一个强大的 AI 框架,适用于 LLM 应用开发。
- 重点掌握 Prompt 设计、Memory、Chains、Agents、知识库(向量数据库)。
- 结合 FastAPI、Vue3、Flutter,可以打造 AI 助手、搜索引擎、智能客服等应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。