一、部署n8n
- *Docker部署*(推荐):
# 创建挂载文件夹mkdir n8n# 进入挂载文件夹cd n8n
#赋予当前文件夹权限sudo chown -R 1000:1000 $PWDsudo chmod -R 755 $PWD#方式一、拉取官方镜像docker pull docker.io/n8nio/n8n:1.90.2# 部署容器sudo docker run -itd --name n8n -p 5678:5678 -e N8N_SECURE_COOKIE=false -e GENERIC_TIMEZONE="Asia/Shanghai" -e N8N_COMMUNITY_PACKAGES_ALLOW_TOOL_USAGE=True -v $PWD/n8n_data:/home/node/.n8n docker.io/n8nio/n8n:1.90.2
#部署方式二、当你的官方镜像拉取失败时,可以采用下面这种方式#拉取国内的镜像docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/n8nio/n8n:1.90.2# 部署容器sudo docker run -itd --name n8n -p 5678:5678 -e N8N_SECURE_COOKIE=false -e GENERIC_TIMEZONE="Asia/Shanghai" -e N8N_COMMUNITY_PACKAGES_ALLOW_TOOL_USAGE=True -v $PWD/n8n_data:/home/node/.n8n swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/n8nio/n8n:1.90#查看部署的容器运行日志,验证是否成功,当看到显示http://localhost:5678/ 时,表示成功docker logs -f n8n
安装完成显示:
-
在浏览器中访问:http://localhost:5678/
二、激活n8n
1、第一次需要注册账号
2、填写问卷,随便填
3、登录后的主界面
4、激活账号,把 key 复制到 Settings/Usage and plan 界面中
在你注册的邮箱中,获取key;
三、安装mcp工具节点
1、找到 settings/Community nodes
输入:n8n-nodes-mcp ,点击安装
安装完成后,刷新页面,就可以选择mcp工具了;
四、开始正式搭建n8n+mcp的工作流
公众号后台,发送【工作流】,获取本次实验的完整工作流文件;
1、创建工作流 workflow
2、添加 On chat message 组件
这是一个会话功能用于发送消息
3. 添加 AI Agent 组件
这个节点将扮演“智能助手”的角色,负责接收用户的问题,并根据我们的配置选择合适的模型和工具进行回答。
配置下信息:选择 defin below
prompt:
{{“选择合适的工具回答用户的问题”+$json.chatInput}}
4、添加deepseek模型,或者别的模型;
添加对应的密钥:
5、添加 两个 MCP Client Tool 组件
在工作流编辑界面中,再次点击tools的“加号”按钮,添加两个个“MCP”节点。在输入框中输入“MCP”,然后从下拉列表中选择“MCP Client”。
第一个mcp配置:
初次使用时,你需要创建一个“credential”。这个“credential”对应了一个MCP服务器。
在魔搭mcp广场,选择你喜欢的mcp服务器:
本文选择了一个:今天吃什么的菜单mcp服务器;
https://www.modelscope.cn/mcp/servers/@worryzyy/howtocook-mcp
把对应的sse的url,添加进下面的配置页面;
这里可以看到,Operation 选择的是 list tools;就是获取工具的列表;
第二个mcp配置:
Operation 选择的是 Execute Tool ;就是让大模型执行对应的mcp工具;
Tool Name 填入:
{{$fromAI(“tool”)}}
Tool Parameters 填入:
{{ $fromAI(‘Tool_Parameters’, ``, ‘json’) }}
最终的工作流展示如下:
6、点击 open chat 进行问答测试
今天一个人晚上吃什么呢
可以看到,会调用两次mcp服务器,第一次获取工具列表;
第二次执行工具,获取结果;
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。