Lawyer LLaMA是一个在法律领域进行了专门训练的开源项目,旨在提升LLaMA模型在中国法律领域的应用能力。
以下是关于Lawyer LLaMA的详细介绍:
项目背景
LLaMA(Large Language Model Family of AI)是一个在自然语言处理领域表现出色的通用大模型。然而,由于缺少专门的法律领域数据,LLaMA在法律领域的表现并未得到充分探究。为了填补这一空白,Lawyer LLaMA项目应运而生。该项目旨在通过额外的法律领域数据训练,使LLaMA模型能够更好地理解和应用法律知识。
训练流程
- 数据收集与预处理:
-
项目团队首先收集了大量的法律语料,包括法律法规、法律案例、法律文献等,构建了一个丰富的法律领域数据集。
-
对这些数据进行预处理,包括清洗、标注和格式化,以便模型能够更好地学习和理解。
- Continual Pretraining:
-
Lawyer LLaMA在大规模法律语料上进行了持续预训练(continual pretraining)。这一阶段的目的是让模型系统地学习中国的法律知识体系,包括法律原则、法律条文、法律案例等。
-
通过持续预训练,模型能够更好地理解法律领域的术语和概念,为后续的应用奠定基础。
- 指令微调:
-
项目团队利用ChatGPT收集了一批对中国国家统一法律职业资格考试客观题(法考)的分析和对法律咨询的回答。
-
这些数据被用来对模型进行指令微调(instruction tuning),即让模型学会如何将法律知识应用到具体场景中,如回答法律咨询、解析法考题目等。
-
指令微调使得模型能够更加准确地理解用户意图,并生成符合法律逻辑和语境的回答。
模型应用
经过上述训练流程后,Lawyer LLaMA在法律领域展现出了强大的应用能力。它可以被用于以下场景:
-
法律咨询:为用户提供专业的法律咨询和建议,帮助他们解决法律问题。
-
法律文档处理:自动解析和处理法律文档,如合同、诉状等,提高工作效率。
-
法律教育:辅助法律学生和专业人士学习和理解法律知识,提供案例分析和法律解释等功能。
总结与展望
Lawyer LLaMA是一个在法律领域进行了专门训练的开源项目,通过在大规模法律语料上进行持续预训练和指令微调,显著提升了LLaMA模型在法律领域的应用能力。未来,随着技术的不断发展和数据的不断丰富,我们期待Lawyer LLaMA能够在法律领域发挥更大的作用,为用户提供更加智能、高效和准确的法律服务。
中文法律LLaMA (LLaMA for Chinese legel domain)
源代码:
http://www.gitpp.com/gitppai/lawyer-llama
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。