微软重磅发布!“全能”AI模型MedImageInsight - 从超声到多模态影像的多领域医疗影像处理平台

微软Health and life sciences重磅发布开源平台MedImageInsight,为广大临床医生提供一个专为医疗影像设计的开源嵌入模型,旨在提高诊断效率和临床决策支持。该模型采用双塔架构,结合图像和文本编码器,支持跨越多种医疗影像模式(如X光、CT、MRI、超声波等)的分类、图像搜索和报告生成。

这篇文章为大家介绍了_MedImageInsight_,这是一个专为医疗影像设计的开源嵌入模型,旨在解决医疗领域中日益增长的影像数据分析需求与专业人员短缺的问题。通过人工智能(AI),_MedImageInsight_可提高诊断的准确性,并通过自动化常规任务、支持临床决策来提升工作流程效率。该模型能够在不需要为每个特定任务进行微调的情况下,跨多个医疗影像子领域进行扩展。

现有的AI模型横向性能比对

AI基础模型在各个领域展现了强大的泛化能力,能够在多个任务和领域中表现出色,减少了对单一专用模型的依赖。然而,之前的模型在扩展性和透明度方面往往存在局限,特别是在医疗环境中,透明、基于证据的决策对于临床工作至关重要。_MedImageInsight_正是为了解决这些问题而开发的,提供了一个广泛适用、透明的通用模型,支持多种医疗影像模式。

MedImageInsight基础模型概述:a) 数据集和用于训练与评估的影像模式的弦图。b) MedImageInsight在MIMIC-CXR数据集上,利用单张影像进行报告生成的表现,比较了多种方法(带有下标“multi”的表示多张影像的基准测试)。c) 单一模型(无微调)在多个数据集上的分类性能的雷达图。所有指标均为mAUC(曲线下面积),除了SD-198和OCT2018,它们显示的是准确率。参考值为SOTA(最先进技术)。d) 3D-MIR基准测试的3D检索结果(固有能力,无需微调)。TP = 肿瘤存在,TS = 肿瘤分期,P@N = Precision @ N(前N个结果的精确率)。e) 3个胸部X光报告生成的预测示例。f) 大约1000个类别的广泛医疗影像分类的10个示例(固有能力,无需微调)。

方法论

_MedImageInsight_采用了双塔架构,类似于CLIP模型,其中图像编码器和文本编码器共同工作,生成用于分类、搜索和报告生成任务的表示。该模型在14种不同的医疗影像模式下训练了超过300万张医疗图像,包括X光、CT、MRI、超声波、皮肤科影像等。它支持图像-图像搜索、图像-文本搜索和分类任务,能够生成受试者工作特性(ROC)曲线以满足监管合规需求,并通过K最近邻(KNN)搜索提供透明的决策依据。

MedImageInsight采用了双塔架构,类似于CLIP模型,其中一个塔处理图像编码,另一个塔处理文本编码。图像编码器使用的是DaViT架构,语言编码器则为一个252M参数的模型。这两个编码器通过UniCL(Unified Contrastive Learning)作为预训练的目标函数进行优化。

结果与表现

MedImageInsight_在多个基准测试中进行了评估,并与其他前沿模型(如_BiomedCLIPCXR Foundation_和_LLaVA-Med)进行了对比。该模型在多个任务中实现了最先进的(SOTA)或达到人类专家级别的表现,包括:

  • 图像分类:在胸部X光、皮肤科影像和眼科影像数据集上,AUC(曲线下面积)评分超过0.9。

  • 3D医疗影像检索:在肝脏、胰腺、肺部和结肠的3D图像检索中,表现优于其他模型。

  • 图像-图像搜索:在骨龄估计等任务中表现出色,其准确性与人类专家相匹敌甚至更优。

  • 报告生成:通过与轻量级文本解码器结合,_MedImageInsight_在医疗图像生成报告的任务中,表现接近大型专用模型,但计算成本大幅减少。

该模型能够生成ROC曲线,调整不同临床需求下的灵敏度和特异性,适用于真实的医疗环境。此外,其基于KNN的搜索能力提供了透明的决策过程,非常适合临床集成和监管合规。

生成能力

_MedImageInsight_可以与轻量级的文本解码器结合,生成从单张医疗图像到临床报告的文本。在_MIMIC-CXR_数据集上,该模型在生成临床报告时表现与GPT-4等大型模型相当,尽管在语言生成方面稍逊一筹。该模型更加专注于临床有效性,而不是自然语言生成,因此它在生成相关医疗信息的同时,参数量显著减少。

挑战与未来工作

尽管_MedImageInsight_的表现出色,但仍存在一些挑战。当前的生成模型,尽管具备多样的任务支持能力,往往缺乏关联分类决策与置信度评分的功能,而这对于生成ROC曲线和满足监管要求至关重要。另一项挑战是大多数生成模型缺乏内置的透明性,而这在临床工作流程中是不可或缺的。_MedImageInsight_通过提供基于KNN的图像检索机制,提供了一种透明的分类方法。

结论

_MedImageInsight_在医疗影像AI领域中代表了重要的一步,提供了一个可以在多个领域扩展的通用模型,而不需要针对任务进行特定的微调。其生成ROC曲线、调整临床灵敏度的能力以及在多个任务中达到人类专家水平的表现,使其成为医疗行业中不可或缺的工具。通过开源发布,作者希望推动整个医学影像AI领域的合作与创新,最终改善全球的医疗健康结果。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值