三个最新RAG前沿思路分解:从Astute RAG减少检索噪声到Retriever-and-Memory自适应检索迭代生成

我们来看看最近的三个RAG进展,包括Astute RAG、StructRAG、Retriever-and-Memory等几个工作,有些思路很有趣,可看看。

一、Astute RAG减少检索噪声

不太好的检索结果可能引入无关、误导甚至恶意信息;LLMs内部知识与外部知识之间的潜在冲突;如何在RAG的后检索阶段有效解决这些冲突。

对于这类问题,之前已有一些工作,例如提高RAG系统鲁棒性的各种方法,如训练LLMs以应对噪声上下文、过滤无关段落、重排段落、动态和迭代检索、查询重写等。

最近的工作《Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models》(https://arxiv.org/abs/2410.07176),提到一个自适应的方式,来看看其实现思路:

1、自适应生成内部知识

首先,从LLMs的内部知识中自适应地生成信息,以补充检索到的段落。这部分利用LLM生成与给定问题相关的准确、相关且无幻觉的段落。

为了确保生成的段落具有高可靠性和准确性,ASTUTE RAG提供宪法原则来指导生成过程,强调生成的段落应该是准确的、相关的且无幻觉的。

M表示LLM,pgen是提示模板,q是问题,m^是生成的最大段落数。

此外,LLM可以自行决定生成多少段落,而不是固定数量的段落,这允许LLM在内部知识有限时生成较少的段落,而在有多个可行答案时生成更多段落。

2、源感知的知识整合

其次,将内部和外部知识进行整合。初始时,将检索到的段落和内部生成的段落合并,并为每段提供来源信息。

然后,通过提示LLM识别一致的信息、检测冲突信息并过滤无关信息。

3、答案的最终确定

最后,根据每组一致段落的可靠性生成最终答案。通过比较不同段落组的答案,选择最可靠的一个作为最终答案。

不过,在最坏情况下,ASTUTE RAG的表现接近于无检索增强(No RAG)的情况。

二、StructRAG引入结构化分流处理

现有的RAG方法在处理知识密集型推理任务时面临挑战,因为这些任务所需的信息分散在文档中,导致模型难以准确识别关键信息并进行全局推理。

《StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization》,https://arxiv.org/abs/2410.08815

先说不足,这个工作YY现象很严重,因为在实际场景中很难会说这个东西应该使用来自于哪个数据,这个路由可能本身就不成立,并且还需要针对不同的类型做处理,这个时延性是很难接受的。

由于缺乏用于选择最佳结构类型的偏好数据,虽然设计了一种合成-模拟-判断的方法来构建训练数据。这种方法虽然有效,但在实际应用中可能面临数据质量和多样性的问题。

此外,尽管混合结构路由器在选择最佳结构类型方面表现良好,但原始LLM在没有特殊训练的情况下仍然难以选择最优的知识类型。

最后,使用单一的固定结构类型(如表格、图表、文本块等)在多样化的任务中表现不佳。这验证了混合信息结构化的重要性,但也增加了系统的复杂性。

之后,我们来看看其具体实现细节,StructRAG包括一个混合结构路由器、一个分散知识结构化器和一个结构化知识利用器,其中,混合结构路由器用于根据任务需求选择最优的结构类型;分散知识结构化器:将原始文档转换为所选结构类型的结构化知识;结构化知识利用器:分解复杂问题并使用结构化知识进行答案推断。

1、混合结构路由器

首先,混合结构路由器,用于根据任务需求选择最合适的结构类型。

该路由器利用问题和文档的核心内容来决定最佳结构类型。

其中,q 是问题,C 是文档的核心内容容,t是选择的结构类型。

可以看其具体实现策略:

首先,从文档中提取每篇文档的核心内容,通常是标题或前几个句子。

然后,根据提取的核心内容和问题,混合结构路由器选择最适合的结构类型。结构类型包括表格(用于统计任务)、图表(用于长链任务)、算法(用于规划任务)、目录(用于总结任务)和文本块(用于简单单跳任务)。

此外,为了提高混合结构路由器的选择能力,基于DPO进行训练。

2、分散知识结构化器

其次,使用基于LLM的分散知识结构化器将原始文档转换为结构化知识。

该结构化器利用LLM的理解和生成能力,从文档中提取结构化知识。

其中,q是问题,t是选择的结构类型,d (i)是第i篇文档,kt(i)是提取的结构化知识,bt(i)是结构化知识的描述。

具体实现上,

首先,分散知识结构化器接收问题、选择的结构类型和每篇原始文档作为输入。

其次,利用LLM的强大理解和生成能力,结构化器从文档中提取结构化知识。不同类型的信息(如表格、图表、算法等)需要不同的处理方式。例如,表格可以通过解析Markdown格式生成,图表可以通过提取实体-关系三元组生成,算法可以通过伪代码表示,目录可以通过分层编号表示。 这里涉及到不同的文档的结构化处理prompt,简单粗暴:

1)Prompts in Constructing Table

2)Prompts in Constructing Graph

3)Prompts in Constructing Algorithm

4)Prompts in Constructing Catalogue

最后,除了提取结构化知识外,结构化器还会生成结构化知识的描述,以便于后续的利用和推理。

3、结构化知识利用器

最后,使用基于LLM的结构化知识利用器将复杂问题分解为简单的子问题,

并通过结构化知识进行精确的知识提取和最终答案推理。

对应的prompt如下:

三、Retriever-and-Memory自适应检索迭代生成

现有的RAG方法在复杂问答任务中往往无法收集到足够的信息。Adaptive RAG(ARAG)尝试通过自适应地决定“何时何地检索”来捕捉更多有价值的知识,但仍存在一些局限性。

最近的工作《Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation》,http://arxiv.org/pdf/2410.08821v1。

先说存在不足的点:

首先,在自适应过程中,检索次数被限制在15次以内,这可能会影响在某些情况下获取更多有用信息的能力。

其次,虽然实验中使用了默认的参数设置,但自适应记忆审查器的触发条件(如无效更新次数、收集迭代次数和去重检索段落数)可能需要进一步调整以优化性能。

最后,长尾知识的处理,某些查询可能对应于语料库中的大量长尾知识片段,这些片段在多次迭代后可能会增加笔记的信息量,但也可能导致不必要的噪声。

我们再来看看实现细节,可以看其构成模块。

1、迭代信息收集器(IIC)

初始阶段,基于查询和检索到的段落生成初始笔记作为初始记忆。

迭代阶段,利用当前最优记忆和原始查询生成新的查询,并检索新的段落更新笔记。

首先,使用BM25或DPR检索器从语料库中检索与问题相关的段落,并将其作为初始记忆存储在LLM中。

然后,迭代地利用当前记忆和原始问题生成新的查询,并检索新的参考段落,更新记忆。

这几个部分,对应的prompt如下:

2、自适应记忆评审器(AMR)

评估更新后的笔记和当前最优记忆的内容质量,决定是否将更新后的笔记替换为新的最优记忆。同时,设置停止条件以控制信息收集的迭代次数。

涉及到两个子问题:

对于决定存储什么作为最优记忆:AMR通过多维评估当前笔记和最优记忆的内容质量,决定是否需要更新记忆。具体来说,AMR比较笔记和记忆的内容质量,如果笔记内容更优,则替换记忆内容。

评估标准包括:信息是否包含与问题直接相关的关键信息、信息是否具有多个方面、信息是否包含足够的细节、信息是否实用

对应的prompt:

对于,决定何时停止检索:AMR建立了三个停止条件来控制信息收集的进程:无效更新次数、最大信息收集步数和最大去重检索段落数。满足任意一个条件都会触发迭代过程的终止。

3、任务导向生成器(Generator

利用最优记忆作为上下文,通过LLM的零样本上下文学习(ICL)生成最终答案。

最后,生成器根据最优记忆生成最终答案。针对不同任务的输出风格,设计了相应的提示模板,确保生成高质量的答案。

4、一个具体实例

我们可以看看一个具体实例,看下执行过程:

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值