大模型:RAG 开发四大痛点及解决方案

痛点1:知识缺失

知识库缺乏必要的上下文信息,导致 RAG 系统在无法找到确切答案时,可能会提供模棱两可的错误信息,而不是直接表明其无知。这种情况下,用户可能会接收到误导性的信息,从而感到沮丧。针对这一问题,有以下两种解决方案:

解决方案一:优化数据质量

“垃圾输入,垃圾输出。” 若源数据质量不佳,比如:存在相互矛盾的信息,即便是再完美的 RAG 流程也无法从劣质数据中提炼出有价值的知识。以下提出的解决方案不仅能解决这一难题,还能应对本文中提到的其他问题。高质量的数据是确保 RAG 流程顺畅运行的关键。

以下是一些常见的数据优化策略:

1. 清除噪音和无关信息:包括移除特殊字符、停用词(比如:“the”和“a”等常见词汇)以及 HTML 标签。

2. 识别并修正错误:涉及拼写错误、打字错误和语法错误。拼写检查工具和语言模型等资源对此很有帮助。

3. 去除重复数据:消除可能干扰检索过程的重复或相似记录。

解决方案二:优化提示词设计

由于知识库信息不足,系统可能会提供看似合理却错误的答案。在这种情况下,优化提示词可以显著提升系统表现。通过使用“若你不确定答案,请表明你不知道”等提示词,可以引导大模型承认其局限,并更清晰地表达不确定性。虽然这不能确保答案的绝对正确性,但在数据优化之后,设计恰当的提示词是提高系统透明度的有效手段之一。

痛点2:更相关的知识没有检索出来

在初步检索阶段知识未能被检索出来。关键的文档可能没有在检索组件给出的初步结果中,导致正确答案被遗漏,大模型因此无法提供精确的响应。研究指出:“问题的答案其实就藏在文档里,只是因为它排名不够高,所以没有被呈现给用户。”针对这一问题,有以下两种解决方案:

解决方案一:调整 chunk_size 和 similarity_top_k 超参数

在 RAG 模型中,chunk_size 和 similarity_top_k 是控制数据检索效率和准确性的两个关键参数。对这些参数的调整会影响到计算效率和信息检索质量之间的平衡。

解决方案二:Rerank 重排序

在将检索结果传递给大语言模型(LLM)之前对其进行重新排序,可以显著增强 RAG 系统的性能。LlamaIndex 的笔记揭示了有无重新排序的差别:

  1. 未经重新排序直接获取前两个节点的检索结果,导致结果不够精确。

  2. 相比之下,检索前 10 个节点并利用 CohereRerank 进行重排序,然后仅返回前两个节点,可以实现更精确的检索。

import os 
from llama _ index.postprocessor.cohere _ rerank import CohereRerank 

api _ key = os.environ  [  "COHERE _ API _ KEY"  ] 
cohere _ rerank = CohereRerank ( api _ key=api _ key , top _ n=2 ) # return top 2 nodes from reranker 

query _ engine = index.as _ query _ engine  ( 
similarity _ top _ k=10 ,  # we can set a high top _ k here to ensure maximum relevant retrieval 
node _ postprocessors= [ cohere _ rerank ],  # pass the reranker to node _ postprocessors 
 ) 

response = query _ engine.query  ( 
 "What did Sam Altman do in this essay?" , 
 )

痛点3:格式错误

输出格式不正确。当大语言模型(LLM)未能遵循以特定格式(比如:表格或列表)提取信息的指令时,我们提出了以下四种解决方案:

解决方案一:优化提示词设计

为了改善提示词并解决这一问题,可以采取以下几种策略:

  1. 明确指出格式要求。
  2. 简化指令并突出关键术语。
  3. 提供具体示例。
  4. 对提示词进行迭代并追加相关问题。

解决方案二:输出解析方法

输出解析可以用于以下目的,以确保获得期望的输出格式:

  1. 为每个提示/查询提供格式化指南。

  2. 对LLM的输出进行“解析”处理。

以下是一个使用 LangChain 输出解析模块的示例代码片段,该模块可在LlamaIndex 中应用。

from llama _ index.core import VectorStoreIndex , SimpleDirectoryReader 
from llama _ index.core.output _ parsers import LangchainOutputParser 
from llama _ index.llms.openai import OpenAI 
from langchain.output _ parsers import StructuredOutputParser , ResponseSchema 

 # load documents , build index 
documents = SimpleDirectoryReader  (  " .. /paul _ graham _ essay/data"  ).load _ data  (  ) 
index = VectorStoreIndex.from _ documents ( documents )

 # define output schema 
response _ schemas =  [ 
ResponseSchema  ( 
name=  "Education" , 
description=  "Describes the author's educational experience/background." , 
 ) , 
ResponseSchema  ( 
name=  "Work" , 
description=  "Describes the author's work experience/background." , 
 ) , 
 ] 

 # define output parser 
lc _ output _ parser = StructuredOutputParser.from _ response _ schemas  ( 
response _ schemas 
 ) 
output _ parser = LangchainOutputParser ( lc _ output _ parser )

 # Attach output parser to LLM 
llm = OpenAI ( output _ parser=output _ parser )

 # obtain a structured response 
query _ engine = index.as _ query _ engine ( llm=llm )
response = query _ engine.query  ( 
 "What are a few things the author did growing up?" , 
 ) 
print ( str ( response ))

解决方案三:Pydantic 程序

Pydantic 程序是一个多功能的框架,它能够将输入的字符串转换成结构化的 Pydantic 对象。LlamaIndex 提供了几种不同类型的 Pydantic 程序:

LLM 文本补全 Pydantic 程序:这类程序负责处理输入的文本,并将其转换成用户自定义的结构化对象,这个过程结合了文本补全 API 和输出解析。

LLM 函数调用 Pydantic 程序:这些程序通过使用 LLM 函数调用 API 来处理输入文本,并将其转换成用户指定的结构化对象。

预制 Pydantic 程序:这些程序设计用于将输入文本转换成预定义的结构化对象。

以下是一个使用 OpenAI 的 Pydantic 程序的示例代码片段:

from pydantic import BaseModel 
from typing import List 

from llama _ index.program.openai import OpenAIPydanticProgram 

 # Define output schema ( without docstring )
class Song  (  BaseModel  ) : 
title : str 
length _ seconds : int 


class Album  (  BaseModel  ) : 
name : str 
artist : str 
songs : List [ Song ]

 # Define openai pydantic program 
prompt _ template _ str =  """\ 
Generate an example album , with an artist and a list of songs.\ 
Using the movie { movie _ name } as inspiration.\ 
 """ 
program = OpenAIPydanticProgram.from _ defaults  ( 
output _ cls=Album , prompt _ template _ str=prompt _ template _ str , verbose= True 
 ) 

 # Run program to get structured output 
output = program  ( 
movie _ name=  "The Shining" , description=  "Data model for an album." 
 )

解决方案四: OpenAI JSON 模式

通过OpenAI的 JSON 模式,我们可以将`response_format`设置为`{ “type”: “json_object” }`,从而激活响应的 JSON 模式。当启用 JSON 模式后,大模型将被限制仅生成可以解析为有效 JSON 对象的字符串。JSON 模式确保了输出格式的强制性,但它并不支持根据特定模式进行验证。

痛点4:输出不完整

回答缺失完整性。虽然部分答复没有错误,但它们并未包含所有必要的细节,即便这些信息在上下文中是可获取的。比如:当有人提问:“文档A、B和C中讨论的主要议题是什么?”为了确保回答的完整性,单独对每份文档进行查询可能更为有效。

解决方案一:查询变换

在最初的 RAG 方法中,比较类型的问题表现尤为不佳。提升 RAG 推理能力的一个有效方法是引入查询理解层——在实际将查询向量存入存储之前进行查询变换。以下是四种不同的查询变换方法:

1. 路由:保留原始查询,并识别出与之相关的合适工具子集。随后,将这些工具指定为合适的选项。

2. 查询重写:保留选定的工具,但以不同方式重新构建查询,以便在同一工具集中应用。

3. 子问题分解:将查询拆分为几个更小的问题,每个问题针对不同的工具,由其元数据来决定。

4. ReAct Agent 工具选择:基于原始查询,确定使用的工具,并制定在该工具上运行的特定查询。

请参考以下示例代码片段,了解如何应用 HyDE(假设文档嵌入)这一查询重写技术。给定一个自然语言查询,首先生成一个假设文档/答案。接着,使用这个假设文档进行嵌入搜索,而不是使用原始查询。

 # load documents , build index 
documents = SimpleDirectoryReader  (  " .. /paul _ graham _ essay/data"  ).load _ data  (  ) 
index = VectorStoreIndex ( documents )

 # run query with HyDE query transform 
query _ str =  "what did paul graham do after going to RISD" 
hyde = HyDEQueryTransform ( include _ original=True )
query _ engine = index.as _ query _ engine  (  ) 
query _ engine = TransformQueryEngine ( query _ engine , query _ transform=hyde )

response = query _ engine.query ( query _ str )
print ( response )

最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述
如有侵权,请联系删除。

  • 13
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值