最新开源:Meta和HuggingFace双双开源「小模型」!超快速、超高性能...

01.Meta 重磅发布!MobileLLM 模型全面开放,零样本常识推理任务表现优异

MobileLLM 是 Meta 推出的一个针对在设备上使用场景优化的十亿参数级语言模型。该项目通过整合 SwiGLU 激活函数、深薄架构、嵌入共享和分组查询注意力机制等多种设计因素,实现了在少于十亿参数的情况下获得高质量的语言模型。

MobileLLM-125M/350M 在零样本常识推理任务上相比先前的同规模最佳模型取得了显著的准确率提升,在聊天和API 调用任务中,效能大幅超越同参数量的小型LLM。

_论文地址:_https://arxiv.org/pdf/2402.14905

02.HuggingFace 的 SmolLM2: 一个超快速、超高性能的小模型

Hugging Face 发布了 SmolLM2 —— 一系列专门针对设备上的应用进行优化的全新小型模型。SmolLM2 在其前身 SmolLM1 的成功基础上,提供了增强的功能,同时保持了轻量级,具有 1.7B、360M、135M 三个参数级。

SmolLM2 旨在通过紧凑和多功能性来克服大型 LLM 的局限性。

该模型在指令跟随、知识推理和数学能力上表现出显著进步。通过监督微调和超反馈优化,该模型支持文本重写、摘要生成和函数调用等任务。

基准测试结果凸显了 SmolLM2 的改进。SmolLM2 在 IFEval 上的得分为 56.7,在 MT Bench 上的得分为 6.13,在 MMLU-Pro 上的得分为 19.3,在 GMS8k 上的得分为 48.2,表现出了极具竞争力的性能,通常可以匹敌甚至超越 Meta Llama 3.2 1B 模型。

03.字节开源 MimicTalk 代码,15分钟生成3D说话人脸视频

  • 论文标题:MimicTalk: Mimicking a personalized and expressive 3D talking face in minutes

  • 论文链接:https://arxiv.org/pdf/2410.06734

  • 项目主页:https://mimictalk.github.io/

  • 代码链接:https://github.com/yerfor/MimicTalk

为了连接个性化数字人小模型和单图驱动通用数字人大模型两个领域之间的空白,浙江大学与字节跳动提出了 MimicTalk 算法。

MimicTalk 是一项创新的技术,它可以在短短15分钟内,训练出一个高质量、个性化的数字人模型。该项目基于 NeRF 技术,能够快速训练并生成高质量的说话头像MimicTalk 的代码基于之前的 Real3D-Portrait 项目,支持通过音频驱动生成特定人物的说话头像。

图1:MimicTalk 包含一个高质量人脸渲染器(紫色)和一个能够模仿说话风格的动作生成器(蓝色)

通过(1)将单图驱动的通用 3D 数字人大模型 Real3D-Portrait (ICLR 2024) 适应到目标数字人的高效微调策略和(2)具有上下文学习能力的人脸动作生成模型,MimicTalk 可以生成相比原有方法更高质量、更具表现力的数字人视频。此外,单个数字人模型的训练时间可以被压缩到 15 分钟以内,相比现有最高效的同类方法快了 47 倍。

04.Meta 开源长视频LLM项目 LongVU:过滤重复帧,增强现实世界长视频理解

最近,Meta AI 团队带来了 LongVU,这是一种新颖的时空自适应压缩机制,旨在提升长视频的语言理解能力。传统的多模态大型语言模型(MLLMs)在处理长视频时面临着上下文长度的限制,而 LongVU 正是为了解决这一难题而诞生。

LongVU 结合了先进的视觉编码器和语言模型,能够有效处理和理解长视频中的复杂信息。项目提供了多种资源版本,支持本地部署和在线演示,适用于需要处理视频和语言数据的多种应用场景。

在各种视频理解基准测试中,LongVU 的表现均超越了现有的其他方法,尤其是在需要理解长达一小时的视频任务中,如 VideoMME 和 MLVU 等。即便是在资源较轻的 LLM 下,LongVU 也能够展现出卓越的表现,且模型规模较小。

_项目入口:_https://vision-cair.github.io/LongVU/

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值