只需15分钟,就能训练高质量,个性化数字人大模型。由浙江大学与字节跳动联合推出MimicTalk算法,目前已开源。
在外表和说话风格上和真人相似。将通用3D数字人大模型适应到单个目标人,采用动静结合的高效微调方案,首次实现了高效率个性化精品数字人视频合成。
MimicTalk是浙江大学和字节跳动共同研发推出基于NeRF(神经辐射场)技术,能在极短的时间内,仅需15分钟训练出个性化和富有表现力的3D说话人脸模型。
MimicTalk的核心在于其高效的微调策略和上下文学习能力。传统的个性化数字人生成往往依赖小型模型逐一训练,不仅耗时长,且对于数据量和样本质量的要求过高。而现有的大型通用3D数字人模型虽能快速生成数字人,但在外表相似度和说话风格模仿上屡有不足。MimicTalk通过结合这两者的优势,实现了前所未有的突破。
官网下载源文件
GitHub:GitHub - yerfor/MimicTalk: MimicTalk: Mimicking a personalized and expressive 3D talking face in minu