什么是小语言模型?

介绍

近年来,人工智能领域取得了重大进展,尤其是在自然语言处理领域。GPT-3 和 PaLM 等大型语言模型因其出色的能力而备受关注,新一波小型语言模型正在兴起,它们在性能和效率之间提供了有希望的平衡。

什么是小语言模型?

小型语言模型是专为自然语言处理而构建的 AI 模型,其参数比大型模型少得多。GPT-4 等模型有数千亿个参数,而小型语言模型可能只有数百万或数亿个参数。尽管这些模型规模很小,但它们可以有效地执行各种任务,因此在广泛的应用中非常有用。

SLM 示例

  • DistilBERT

  • TinyBERT

  • MobileBERT

  • DistilGPT2

  • GPT-Nano

SLM 的优点和缺点

以下是小型语言模型的一些优点和缺点。

优点

  1. 效率: SLM 在功能较弱的设备上运行,使其成为智能手机或嵌入式系统上应用的理想选择。

  2. 成本效益:训练和运行 SLM 需要较少的计算能力,从而显著节省成本。

  3. 适应性:它们的尺寸较小,可以更轻松、更快速地进行更新,确保它们与不断发展的数据保持相关性。

  4. 更低的延迟: SLM 处理信息的速度更快,使其非常适合聊天机器人或数据分析等实时应用程序。

缺点

  1. 知识库有限:与 LLM(大语言模型) 相比,SLM 的知识库较小。这可能导致理解复杂主题或生成细微响应时出现问题。

  2. 准确性: SLM 可能难以完成需要高精度的任务,例如复杂的翻译或编写不同的创意文本格式。

  3. 安全性:开源 SLM 可能更容易受到安全风险的影响,尤其是在处理敏感数据时。

SLM 的应用

尽管体积小巧,SLM 却具有惊人的多功能性。以下是其一些主要应用。

  1. 聊天机器人和虚拟代理:小型语言模型可用于为聊天机器人和虚拟助手提供支持,使它们能够更有效地理解和响应用户查询。

  2. 内容生成:小型语言模型可帮助完成各种内容生成活动,例如生成高质量内容,例如文章、社交媒体帖子甚至整本书。它们能够生成类似人类的写作,这对营销人员、作者和内容提供商非常有用。

  3. 语言翻译:这些模型可用于实时语言翻译,促进跨语言和文化界限的交流,尽管它们的准确性可能无法与复杂翻译的 LLM 相匹配。

  4. 文本分类:可以训练小型语言模型对垃圾邮件、情绪或主题等文本进行分类,使其可用于电子邮件过滤或情绪分析等应用程序。

  5. 个性化:小型语言模型可用于根据用户偏好和行为个性化内容和推荐。这种定制可改善从电子商务到娱乐等各种应用的客户体验。

SLM的未来

随着技术的进步,SLM 可能会变得更加强大和适应性更强。它们具有巨大的潜力,可以使人工智能平民化,让更广泛的企业和个人能够使用这些复杂的功能。SLM 可能不是 LLM 的强大竞争对手,但它们提供了效率、成本和适应性的迷人组合。

SLM 与 LLM 之间的区别

比较 SLM 和 LLM 可能很困难,因为它们各有优缺点。让我们从一些关键方面对它们进行比较。

结论

小型语言模型有可能改变我们与机器互动的方式,从而实现更高效、可扩展且更专业的人工智能应用。随着该领域的发展,我们可以预期这些模型将在影响人工智能和人机交互的未来方面发挥重要作用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 12
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值